11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      In situ Ca2+ dependence for activation of Ca2+/calmodulin-dependent protein kinase II in vascular smooth muscle cells.

      The Journal of Biological Chemistry
      Animals, Calcium, metabolism, Calcium-Calmodulin-Dependent Protein Kinases, Cells, Cultured, Enzyme Activation, Muscle, Smooth, Vascular, cytology, enzymology, Phosphorylation, Rats, Rats, Sprague-Dawley

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activation of Ca2+/calmodulin (CaM)-dependent protein kinase II (CaM kinase II) and development of the Ca2+/CaM-independent (autonomous) form of the kinase was investigated in cultured vascular smooth muscle (VSM) cells. Within 15 s of ionomycin (1 microM) exposure 52.7 +/- 4.4% of the kinase became autonomous, a response that was partially maintained for at least 10 min. This correlated with 32P phosphorylation of CaM kinase II delta-subunits in situ and was abolished by pretreatment with the CaM kinase II inhibitor KN-93. The in situ Ca2+ dependence for generating autonomous CaM kinase II was determined in cells selectively permeabilized to Ca2+ and depleted of sarcoplasmic reticulum Ca2+ by pretreatment with thapsigargin. Analysis of the resulting curve revealed an EC50 (concentration producing 50% of maximal response) of 692 +/- 28 nM [Ca2+]i, a maximum of 68 +/- 2% of the total activity becoming autonomous reflecting nearly complete activation of CaM kinase II and a Hill slope of 3, indicating a highly cooperative process. Based on this dependence and measured [Ca2+]i responses in intact cells, increases in autonomous activity stimulated by angiotensin II, vasopressin and platelet-derived growth factor-BB (4.6-, 2-, and 1.7-fold, respectively) were unexpectedly high. In intact cells stimulated by ionomycin, the correlation between autonomous activity and [Ca2+]i resulted in a parallel curve with an EC50 of 304 +/- 23 nM [Ca2+]i. This apparent increase in Ca2+ sensitivity for generating autonomous activity in intact VSM cells was eliminated by thapsigargin pretreatment. We conclude that alteration of [Ca2+]i over a physiological range activates CaM kinase II in VSM and that this process is facilitated by release of Ca2+ from intracellular pools which initiates cooperative autophosphorylation and consequent generation of autonomous CaM kinase II activity.

          Related collections

          Author and article information

          Comments

          Comment on this article