Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Getting ready for invasions: can background level of risk predict the ability of naïve prey to survive novel predators?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Factors predicting the outcome of predator invasions on native prey communities are critical to our understanding of invasion ecology. Here, we tested whether background level of risk affected the survival of prey to novel predators, both native and invasive, predicting that high-risk environments would better prepare prey for invasions. We used naïve woodfrog as our prey and exposed them to a high or low risk regime either as embryos (prenatal exposure) or as larvae (recent exposure). Tadpoles were then tested for their survival in the presence of 4 novel predators: two dytiscid beetles, crayfish and trout. Survival was affected by both risk level and predator type. High risk was beneficial to prey exposed to the dytiscids larvae (ambush predators), but detrimental to prey exposed to crayfish or trout (pursuit predators). No effect of ontogeny of risk was found. We further documented that high-risk tadpoles were overall more active than their low-risk counterparts, explaining the patterns found with survival. Our results provide insights into the relationship between risk and resilience to predator invasions.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Invasive species are a leading cause of animal extinctions.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution and behavioural responses to human-induced rapid environmental change

            Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals’ responses to their environment and provide suggestion for future work.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interactive effects of habitat modification and species invasion on native species decline.

              Different components of global environmental change are often studied and managed independently, but mounting evidence points towards complex non-additive interaction effects between drivers of native species decline. Using the example of interactions between land-use change and biotic exchange, we develop an interpretive framework that will enable global change researchers to identify and discriminate between major interaction pathways. We formalise a distinction between numerically mediated versus functionally moderated causal pathways. Despite superficial similarity of their effects, numerical and functional pathways stem from fundamentally different mechanisms of action and have fundamentally different consequences for conservation management. Our framework is a first step toward building a better quantitative understanding of how interactions between drivers might mitigate or exacerbate the net effects of global environmental change on biotic communities in the future.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                06 February 2015
                2015
                : 5
                : 8309
                Affiliations
                [1 ]Department of Biomedical Science, WCVM, University of Saskatchewan , SK, Canada
                [2 ]Department of Biology, University of Saskatchewan , SK, Canada
                [3 ]Department of Biology, Concordia University , QC, Canada
                Author notes
                Article
                srep08309
                10.1038/srep08309
                4319150
                25655436
                82a5ddc5-a189-4f4f-a3f6-a70856d8edc6
                Copyright © 2015, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 02 September 2014
                : 06 January 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article