4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential

      , ,
      Nature Reviews Rheumatology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: not found
          • Article: not found

          MicroRNAs

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromatin modifications and their function.

            The surface of nucleosomes is studded with a multiplicity of modifications. At least eight different classes have been characterized to date and many different sites have been identified for each class. Operationally, modifications function either by disrupting chromatin contacts or by affecting the recruitment of nonhistone proteins to chromatin. Their presence on histones can dictate the higher-order chromatin structure in which DNA is packaged and can orchestrate the ordered recruitment of enzyme complexes to manipulate DNA. In this way, histone modifications have the potential to influence many fundamental biological processes, some of which may be epigenetically inherited.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic regulation of gene expression by histone lactylation

              The Warburg effect, originally describing augmented lactogenesis in cancer, is associated with diverse cellular processes such as angiogenesis, hypoxia, macrophage polarization, and T-cell activation. This phenomenon is intimately linked with multiple diseases including neoplasia, sepsis, and autoimmune diseases 1,2 . Lactate, a compound generated during Warburg effect, is widely known as an energy source and metabolic byproduct. However, its non-metabolic functions in physiology and disease remain unknown. Here we report lactate-derived histone lysine lactylation as a new epigenetic modification and demonstrate that histone lactylation directly stimulates gene transcription from chromatin. In total, we identify 28 lactylation sites on core histones in human and mouse cells. Hypoxia and bacterial challenges induce production of lactate through glycolysis that in turn serves as precursor for stimulating histone lactylation. Using bacterially exposed M1 macrophages as a model system, we demonstrate that histone lactylation has different temporal dynamics from acetylation. In the late phase of M1 macrophage polarization, elevated histone lactylation induces homeostatic genes involved in wound healing including arginase 1. Collectively, our results suggest the presence of an endogenous “lactate clock” in bacterially challenged M1 macrophages that turns on gene expression to promote homeostasis. Histone lactylation thus represents a new avenue for understanding the functions of lactate and its role in diverse pathophysiological conditions, including infection and cancer.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Nature Reviews Rheumatology
                Nat Rev Rheumatol
                Springer Science and Business Media LLC
                1759-4790
                1759-4804
                September 03 2021
                Article
                10.1038/s41584-021-00683-2
                34480165
                82f98364-5b95-44d7-9708-62f101b71e5a
                © 2021

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article