16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An overview on recent in vivo biological application of cerium oxide nanoparticles

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cerium oxide nanoparticles (CNPs) possess a great potential as therapeutic agents due to their ability to self-regenerate by reversibly switching between two valences +3 and +4. This article reviews recent articles dealing with in vivo studies of CNPs towards Alzheimer's disease, obesity, liver inflammation, cancer, sepsis, amyotrophic lateral sclerosis, acute kidney injury, radiation-induced tissue damage, hepatic ischemia reperfusion injury, retinal diseases and constipation. In vivo anti-cancer studies revealed the effectiveness of CNPs to reduce tumor growth and angiogenesis in melanoma, ovarian, breast and retinoblastoma cancer cell-induced mice, with their conjugation with folic acid, doxorubicin, CPM, or CXC receptor-4 antagonist ligand eliciting higher efficiency. After conjugation with triphenylphosphonium or magnetite nanoparticles, CNPs were shown to combat Alzheimer's disease by reducing amyloid-β, glial fibrillary acidic protein, inflammatory and oxidative stress markers in mice. By improving muscle function and longevity, the citrate/EDTA-stabilized CNPs could ameliorate amyotrophic lateral sclerosis. Also, they could effectively reduce obesity in mice by scavenging ROS and reducing adipogenesis, triglyceride synthesis, GAPDH enzyme activity, leptin and insulin levels. In CCl 4-induced rats, stress signaling pathways due to inflammatory cytokines, liver enzymes, oxidative and endoplasmic reticulum messengers could be attenuated by CNPs. Commercial CNPs showed protective effects on rats with hepatic ischemia reperfusion and peritonitis-induced hepatic/cardiac injuries by decreasing oxidative stress and hepatic/cardiac inflammation. The same CNPs could improve kidney function by diminishing renal superoxide, hyperglycemia and tubular damage in peritonitis-induced acute kidney injury in rats. Radiation-induced lung and testicular tissue damage could be alleviated in mice, with the former showing improvement in pulmonary distress and bronchoconstriction and the latter exhibiting restoration in spermatogenesis rate and spermatid/spermatocyte number. Through enhancement of gastrointestinal motility, the CNPs could alleviate constipation in both young and old rats. They could also protect rat from light-induced retinal damage by slowing down neurodegenerative process and microglial activation.

          Graphical abstract

          The cerium oxide nanoparticles with their unique redox property are capable of exhibiting antioxidant, anti-inflammatory and antiangiogenic effects through alleviating oxidative stress associated with many pathological disorders.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Origin and physiological roles of inflammation.

          Inflammation underlies a wide variety of physiological and pathological processes. Although the pathological aspects of many types of inflammation are well appreciated, their physiological functions are mostly unknown. The classic instigators of inflammation - infection and tissue injury - are at one end of a large range of adverse conditions that induce inflammation, and they trigger the recruitment of leukocytes and plasma proteins to the affected tissue site. Tissue stress or malfunction similarly induces an adaptive response, which is referred to here as para-inflammation. This response relies mainly on tissue-resident macrophages and is intermediate between the basal homeostatic state and a classic inflammatory response. Para-inflammation is probably responsible for the chronic inflammatory conditions that are associated with modern human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Free radicals in the physiological control of cell function.

            At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, however, nitric oxide (NO), superoxide anion, and related reactive oxygen species (ROS) play an important role as regulatory mediators in signaling processes. Many of the ROS-mediated responses actually protect the cells against oxidative stress and reestablish "redox homeostasis." Higher organisms, however, have evolved the use of NO and ROS also as signaling molecules for other physiological functions. These include regulation of vascular tone, monitoring of oxygen tension in the control of ventilation and erythropoietin production, and signal transduction from membrane receptors in various physiological processes. NO and ROS are typically generated in these cases by tightly regulated enzymes such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. In a given signaling protein, oxidative attack induces either a loss of function, a gain of function, or a switch to a different function. Excessive amounts of ROS may arise either from excessive stimulation of NAD(P)H oxidases or from less well-regulated sources such as the mitochondrial electron-transport chain. In mitochondria, ROS are generated as undesirable side products of the oxidative energy metabolism. An excessive and/or sustained increase in ROS production has been implicated in the pathogenesis of cancer, diabetes mellitus, atherosclerosis, neurodegenerative diseases, rheumatoid arthritis, ischemia/reperfusion injury, obstructive sleep apnea, and other diseases. In addition, free radicals have been implicated in the mechanism of senescence. That the process of aging may result, at least in part, from radical-mediated oxidative damage was proposed more than 40 years ago by Harman (J Gerontol 11: 298-300, 1956). There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The antibody aducanumab reduces Aβ plaques in Alzheimer's disease.

              Alzheimer's disease (AD) is characterized by deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain, accompanied by synaptic dysfunction and neurodegeneration. Antibody-based immunotherapy against Aβ to trigger its clearance or mitigate its neurotoxicity has so far been unsuccessful. Here we report the generation of aducanumab, a human monoclonal antibody that selectively targets aggregated Aβ. In a transgenic mouse model of AD, aducanumab is shown to enter the brain, bind parenchymal Aβ, and reduce soluble and insoluble Aβ in a dose-dependent manner. In patients with prodromal or mild AD, one year of monthly intravenous infusions of aducanumab reduces brain Aβ in a dose- and time-dependent manner. This is accompanied by a slowing of clinical decline measured by Clinical Dementia Rating-Sum of Boxes and Mini Mental State Examination scores. The main safety and tolerability findings are amyloid-related imaging abnormalities. These results justify further development of aducanumab for the treatment of AD. Should the slowing of clinical decline be confirmed in ongoing phase 3 clinical trials, it would provide compelling support for the amyloid hypothesis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Asian J Pharm Sci
                Asian J Pharm Sci
                Asian Journal of Pharmaceutical Sciences
                Shenyang Pharmaceutical University
                1818-0876
                2221-285X
                27 November 2019
                September 2020
                27 November 2019
                : 15
                : 5
                : 558-575
                Affiliations
                [0001]Department of Food Science, Fu Jen Catholic University, Taipei 242
                Author notes
                [* ]Corresponding author. Fu Jen Catholic University, No. 510 Zhongzheng Road, Xinzhuang District, Taipei 242. Tel.: +886 2 29053626 002622@ 123456mail.fju.edu.tw
                Article
                S1818-0876(19)30503-3
                10.1016/j.ajps.2019.10.005
                7610205
                33193860
                83090b35-2971-4779-b7b3-45b5a8d539cb
                © 2019 Shenyang Pharmaceutical University. Published by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 15 April 2019
                : 25 August 2019
                : 5 October 2019
                Categories
                Review

                cerium oxide nanoparticles,reactive oxygen species,antioxidant,in vivo studies,biological activity

                Comments

                Comment on this article