67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Advancing the Electrochemistry of the Hydrogen-Evolution Reaction through Combining Experiment and Theory

      , , ,
      Angewandte Chemie International Edition
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.

          Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Why gold is the noblest of all the metals

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction

              Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low costs remains a grand challenge. Here, we report a hybrid material of Co3O4 nanocrystals grown on reduced graphene oxide (GO) as a high-performance bi-functional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). While Co3O4 or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen-doping of graphene. The Co3O4/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high performance non-precious metal based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co3O4 and graphene.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley-Blackwell
                14337851
                January 02 2015
                January 02 2015
                : 54
                : 1
                : 52-65
                Article
                10.1002/anie.201407031
                25384712
                830fd724-1596-4c33-b55d-a7ca67ba5d84
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article