20
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before September 30, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Phosphate-Induced Calcification of Vascular Smooth Muscle Cells is Associated with the TLR4/NF-κb Signaling Pathway

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: Hyperphosphatemia is one of the most notable features of chronic kidney disease (CKD). Numerous epidemiological and clinical studies have found that high serum phosphate concentrations are associated with calcification in the coronary arteries. However, the mechanisms underlying the vascular calcification induced by high phosphate have not been understood fully. Methods: Vascular smooth muscle cells (VSMCs) were cultured in high-phosphate media to induce vascular calcification, which was detected by Alizarin red S staining. Gene expression and protein levels of differentiation markers were determined by real-time RT-PCR and western blotting, respectively. Protein levels of phosphorylated NF-κB and TLR4 were detected by western blotting, and the role of NF-κB/TLR4 was further confirmed by using an NF-κB inhibitor or TLR4 siRNA. Results: Our results showed that high-phosphate media induced obvious calcification of VSMCs. Simultaneously, VSMC differentiation was confirmed by the increased expression of bone morphogenetic protein-2 and Runt-related transcription factor 2 and decreased expression of the VSMC-specific marker SM22α, which was accompanied by the increased expression of inflammatory cytokines. Moreover, a significant upregulation of TLR4 and phosphorylated NF-κB was also detected in VSMCs with high-phosphate media. In contrast, VSMC calcification and the increased expression of inflammatory cytokines were markedly attenuated by pretreatment with TLR4 siRNA and pyrrolidine dithiocarbamic acid, an NF-κB inhibitor. Conclusion: These data suggest that high-phosphate conditions directly induce vascular calcification via the activation of TLR4/NF-κB signaling in VSMCs. Moreover, inhibition of the TLR4/NF-κB signaling pathway might be a key intervention to prevent vascular calcification in patients with CKD.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Phosphate regulation of vascular smooth muscle cell calcification.

          Vascular calcification is a common finding in atherosclerosis and a serious problem in diabetic and uremic patients. Because of the correlation of hyperphosphatemia and vascular calcification, the ability of extracellular inorganic phosphate levels to regulate human aortic smooth muscle cell (HSMC) culture mineralization in vitro was examined. HSMCs cultured in media containing normal physiological levels of inorganic phosphate (1.4 mmol/L) did not mineralize. In contrast, HSMCs cultured in media containing phosphate levels comparable to those seen in hyperphosphatemic individuals (>1.4 mmol/L) showed dose-dependent increases in mineral deposition. Mechanistic studies revealed that elevated phosphate treatment of HSMCs also enhanced the expression of the osteoblastic differentiation markers osteocalcin and Cbfa-1. The effects of elevated phosphate on HSMCs were mediated by a sodium-dependent phosphate cotransporter (NPC), as indicated by the ability of the specific NPC inhibitor phosphonoformic acid, to dose dependently inhibit phosphate-induced calcium deposition as well as osteocalcin and Cbfa-1 gene expression. With the use of polymerase chain reaction and Northern blot analyses, the NPC in HSMCs was identified as Pit-1 (Glvr-1), a member of the novel type III NPCs. These data suggest that elevated phosphate may directly stimulate HSMCs to undergo phenotypic changes that predispose to calcification and offer a novel explanation of the phenomenon of vascular calcification under hyperphosphatemic conditions. The full text of this article is available at http://www.circresaha.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association of serum phosphate with vascular and valvular calcification in moderate CKD.

            Within the normal range, higher serum phosphate concentrations are associated with cardiovascular events and mortality in individuals with chronic kidney disease (CKD) and in those with normal kidney function. Experimental models suggest that phosphate has a direct calcifying effect on vascular smooth muscle. We examined associations of serum phosphate concentrations with vascular and valvular calcification in 439 participants from the Multi-Ethnic Study of Atherosclerosis who had moderate CKD and no clinical cardiovascular disease. Serum phosphate concentrations were within the normal range (2.5 to 4.5 mg/dl) in 95% of study participants. The prevalence of calcification in the coronary arteries, descending thoracic aorta, aortic valve, and mitral valve was 67, 49, 25, and 20%, respectively, measured by electron-beam or multi-detector row computed tomography. After adjustment for demographics and estimated GFR, each 1-mg/dl increment in serum phosphate concentration was associated with a 21% (P = 0.002), 33% (P = 0.001), 25% (P = 0.16), and 62% (P = 0.007) greater prevalence of coronary artery, thoracic, aortic valve, and mitral valve calcification, respectively. Adjustment for traditional risk factors for atherosclerosis, parathyroid hormone, or 1,25-dihydroxyvitamin D levels did not alter these associations. In conclusion, higher serum phosphate concentrations, although still within the normal range, are associated with a greater prevalence of vascular and valvular calcification in people with moderate CKD. It remains to be determined whether lowering phosphate concentrations will impact calcification risk in the setting of kidney disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles.

              Genetic evidence from mutant mice suggests that alpha(2)-HS glycoprotein/fetuin-A (Ahsg) is a systemic inhibitor of precipitation of basic calcium phosphate preventing unwanted calcification. Using electron microscopy and dynamic light scattering, we demonstrate that precipitation inhibition by Ahsg is caused by the transient formation of soluble, colloidal spheres, containing Ahsg, calcium, and phosphate. These "calciprotein particles" of 30-150 nm in diameter are initially amorphous and soluble but turn progressively more crystalline and insoluble in a time- and temperature-dependent fashion. Solubilization in Ahsg-containing calciprotein particles provides a novel conceptual framework to explain how insoluble calcium precipitates may be transported and removed in the bodies of mammals. Mutational analysis showed that the basic calcium phosphate precipitation inhibition activity resides in the amino-terminal cystatin-like domain D1 of Ahsg. A structure-function analysis of wild type and mutant forms of cystatin-like domains from Ahsg, full-length fetuin-B, histidine-rich glycoprotein, and kininogen demonstrated that Ahsg domain D1 is most efficient in inhibiting basic calcium phosphate precipitation. The computer-modeled domain structures suggest that a dense array of acidic residues on an extended beta-sheet of the cystatin-like domain Ahsg-D1 mediates efficient inhibition.
                Bookmark

                Author and article information

                Journal
                KBR
                Kidney Blood Press Res
                10.1159/issn.1420-4096
                Kidney and Blood Pressure Research
                S. Karger AG
                1420-4096
                1423-0143
                2017
                January 2018
                08 December 2017
                : 42
                : 6
                : 1205-1215
                Affiliations
                Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
                Author notes
                *Jinghong Zhao, Department of Nephrology, Xinqiao Hospital,, Third Military Medical University, Chongqing, 400037 (China), Tel. +86-23-68774321 Fax +86-23-68774321 E-Mail zhaojh@tmmu.edu.cn
                Article
                485874 Kidney Blood Press Res 2017;42:1205–1215
                10.1159/000485874
                29227975
                8325bd12-4eeb-44c2-af25-a542d651523d
                © 2017 The Author(s). Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 14 July 2017
                : 30 November 2017
                Page count
                Figures: 5, Tables: 1, Pages: 11
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                TLR4,Vascular calcification,VSMCs,NF-κB,High phosphate
                Cardiovascular Medicine, Nephrology
                TLR4, Vascular calcification, VSMCs, NF-κB, High phosphate

                Comments

                Comment on this article