6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cascade Reactions in Nanozymes: Spatially Separated Active Sites inside Ag-Core–Porous-Cu-Shell Nanoparticles for Multistep Carbon Dioxide Reduction to Higher Organic Molecules

      rapid-communication

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Enzymes can perform complex multistep cascade reactions by linking multiple distinct catalytic sites via substrate channeling. We mimic this feature in a generalized approach with an electrocatalytic nanoparticle for the carbon dioxide reduction reaction comprising a Ag core surrounded by a porous Cu shell, providing different active sites in nanoconfined volumes. The architecture of the nanozyme provides the basis for a cascade reaction, which promotes C–C coupling reactions. The first step occurs on the Ag core, and the subsequent steps on the porous copper shell, where a sufficiently high CO concentration due to the nanoconfinement facilitates C–C bond formation. The architecture yields the formation of n-propanol and propionaldehyde at potentials as low as −0.6 V vs RHE.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)

          An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field. Nanozymes are nanomaterials with enzyme-like characteristics ( Chem. Soc. Rev. , 2013, 42 , 6060–6093). They have been developed to address the limitations of natural enzymes and conventional artificial enzymes. Along with the significant advances in nanotechnology, biotechnology, catalysis science, and computational design, great progress has been achieved in the field of nanozymes since the publication of the above-mentioned comprehensive review in 2013. To highlight these achievements, this review first discusses the types of nanozymes and their representative nanomaterials, together with the corresponding catalytic mechanisms whenever available. Then, it summarizes various strategies for modulating the activity and selectivity of nanozymes. After that, the broad applications from biomedical analysis and imaging to theranostics and environmental protection are covered. Finally, the current challenges faced by nanozymes are outlined and the future directions for advancing nanozyme research are suggested. The current review can help researchers know well the current status of nanozymes and may catalyze breakthroughs in this field.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films.

              Modified Cu electrodes were prepared by annealing Cu foil in air and electrochemically reducing the resulting Cu(2)O layers. The CO(2) reduction activities of these electrodes exhibited a strong dependence on the initial thickness of the Cu(2)O layer. Thin Cu(2)O layers formed by annealing at 130 °C resulted in electrodes whose activities were indistinguishable from those of polycrystalline Cu. In contrast, Cu(2)O layers formed at 500 °C that were ≥~3 μm thick resulted in electrodes that exhibited large roughness factors and required 0.5 V less overpotential than polycrystalline Cu to reduce CO(2) at a higher rate than H(2)O. The combination of these features resulted in CO(2) reduction geometric current densities >1 mA/cm(2) at overpotentials <0.4 V, a higher level of activity than all previously reported metal electrodes evaluated under comparable conditions. Moreover, the activity of the modified electrodes was stable over the course of several hours, whereas a polycrystalline Cu electrode exhibited deactivation within 1 h under identical conditions. The electrodes described here may be particularly useful for elucidating the structural properties of Cu that determine the distribution between CO(2) and H(2)O reduction and provide a promising lead for the development of practical catalysts for electrolytic fuel synthesis.
                Bookmark

                Author and article information

                Journal
                J Am Chem Soc
                J Am Chem Soc
                ja
                jacsat
                Journal of the American Chemical Society
                American Chemical Society
                0002-7863
                1520-5126
                25 August 2019
                11 September 2019
                : 141
                : 36
                : 14093-14097
                Affiliations
                []School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales , Sydney 2052, Australia
                []Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum , Universitätsstraße 150, D-44780 Bochum, Germany
                []Chemical Technology III, Faculty of Chemistry and CENIDE, Center for Nanointegration University Duisburg Essen , Carl-Benz-Straße 199, D-47057 Duisburg, Germany
                [§ ]Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales , Sydney 2052, Australia
                []Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales , Sydney 2052, Australia
                Author notes
                Article
                10.1021/jacs.9b07310
                7551659
                31448598
                833211f4-0bcf-4f18-903b-a4094a6f0bff

                This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.

                History
                : 10 July 2019
                Categories
                Communication
                Custom metadata
                ja9b07310
                ja9b07310

                Chemistry
                Chemistry

                Comments

                Comment on this article