58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanical Stretch Modulates MicroRNA 21 Expression, Participating in Proliferation and Apoptosis in Cultured Human Aortic Smooth Muscle Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Stretch affects vascular smooth muscle cell proliferation and apoptosis, and several responsible genes have been proposed. We tested whether the expression of microRNA 21 (miR-21) is modulated by stretch and is involved in stretch-induced proliferation and apoptosis of human aortic smooth muscle cells (HASMCs).

          Methods and Results

          RT-PCR revealed that elevated stretch (16% elongation, 1 Hz) increased miR-21 expression in cultured HASMCs, and moderate stretch (10% elongation, 1 Hz) decreased the expression. BrdU incorporation assay and cell counting showed miR-21 involved in the proliferation of HASMCs mediated by stretch, likely by regulating the expression of p27 and phosphorylated retinoblastoma protein (p-Rb). FACS analysis revealed that the complex of miR-21 and programmed cell death protein 4 (PDCD4) participated in regulating apoptosis with stretch. Stretch increased the expression of primary miR-21 and pre-miR-21 in HASMCs. Electrophoretic mobility shift assay (EMSA) demonstrated that stretch increased NF-κB and AP-1 activities in HASMCs, and blockade of AP-1 activity by c-jun siRNA significantly suppressed stretch-induced miR-21 expression.

          Conclusions

          Cyclic stretch modulates miR-21 expression in cultured HASMCs, and miR-21 plays important roles in regulating proliferation and apoptosis mediated by stretch. Stretch upregulates miR-21 expression at least in part at the transcription level and AP-1 is essential for stretch-induced miR-21 expression.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation.

          MicroRNAs (miRNAs) are a recently discovered class of endogenous, small, noncoding RNAs that regulate about 30% of the encoding genes of the human genome. However, the role of miRNAs in vascular disease is currently completely unknown. Using microarray analysis, we demonstrated for the first time that miRNAs are aberrantly expressed in the vascular walls after balloon injury. The aberrantly expressed miRNAs were further confirmed by Northern blot and quantitative real-time polymerase chain reaction. Modulating an aberrantly overexpressed miRNA, miR-21, via antisense-mediated depletion (knock-down) had a significant negative effect on neointimal lesion formation. In vitro, the expression level of miR-21 in dedifferentiated vascular smooth muscle cells was significantly higher than that in fresh isolated differentiated cells. Depletion of miR-21 resulted in decreased cell proliferation and increased cell apoptosis in a dose-dependent manner. MiR-21-mediated cellular effects were further confirmed in vivo in balloon-injured rat carotid arteries. Western blot analysis demonstrated that PTEN and Bcl-2 were involved in miR-21-mediated cellular effects. The results suggest that miRNAs are novel regulatory RNAs for neointimal lesion formation. MiRNAs may be a new therapeutic target for proliferative vascular diseases such as atherosclerosis, postangioplasty restenosis, transplantation arteriopathy, and stroke.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction.

            Several recent reports have suggested that microRNAs (miRNAs) might play critical roles in acute myocardial infarction (AMI). However, the miRNA expression signature in the early phase of AMI has not been identified. In this study, the miRNA expression signature was investigated in rat hearts 6 h after AMI. Compared with the expression signature in the noninfarcted areas, 38 miRNAs were differentially expressed in infarcted areas and 33 miRNAs were aberrantly expressed in the border areas. Remarkably, miR-21 expression was significantly down-regulated in infarcted areas, but was up-regulated in border areas. The down-regulation of miR-21 in the infarcted areas was inhibited by ischemic preconditioning, a known cardiac protective method. Overexpression of miR-21 via adenovirus expressing miR-21 (Ad-miR-21) decreased myocardial infarct size by 29% at 24 h and decreased the dimension of left ventricles at 2 weeks after AMI. Using both gain-of-function and loss-of-function approaches in cultured cardiac myocytes, we identified that miR-21 had a protective effect on ischemia-induced cell apoptosis that was associated with its target gene programmed cell death 4 and activator protein 1 pathway. The protective effect of miR-21 against ischemia-induced cardiac myocyte damage was further confirmed in vivo by decreased cell apoptosis in the border and infarcted areas of the infarcted rat hearts after treatment with Ad-miR-21. The results suggest that miRNAs such as miR-21 may play critical roles in the early phase of AMI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation.

              Adhesion of circulating monocytes to vascular endothelial cells (ECs) is a critical event leading to vascular inflammation and, hence, development of atherosclerosis. MicroRNAs (miRs) are a class of endogenous, highly conserved, noncoding small RNAs that play important roles in regulating gene expression and cellular function, as well as pathogenesis of atherosclerosis. Here, we showed that oscillatory shear stress (OSS) induces the expression of miR-21 at the transcriptional level in cultured human umbilical vein ECs via an increased binding of c-Jun, which is a component of transcription factor activator protein-1 (AP-1), to the promoter region of miR-21. OSS induction of miR-21 inhibited the translation, but not transcription, of peroxisome proliferators-activated receptor-α (PPARα) by 3'-UTR targeting. Overexpression of miR-21 up-regulated AP-1 activation, which was attenuated by exogenous expression of PPARα. OSS and overexpression of miR-21 enhanced the expression of adhesion molecules vascular cell adhesion molecule-1 and monocyte chemotactic protein-1 and the consequential adhesion of monocytes to ECs. Overexpression of PPARα significantly attenuated the AP-1-mediated miR-21 expression. These results demonstrate a unique mechanism by which OSS induces AP-1-dependent miR-21 expression, which directly targets PPARα to inhibit its expression, thereby allowing activation of AP-1 and the promotion of monocyte adhesion. Our findings suggest the presence of a positive feedback loop that enables the sustained induction of miR-21, thus contributing to the proinflammatory responses of vascular endothelium under OSS.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                17 October 2012
                : 7
                : 10
                : e47657
                Affiliations
                [1 ]Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
                [2 ]Department of Emergency, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
                [3 ]Department of Cardiology, Shandong Provincial Chest Hospital, Jinan, People’s Republic of China
                University of Western Ontario, Canada
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JTS MZ. Performed the experiments: JTS BH CLB. Analyzed the data: JTS HYQ. Contributed reagents/materials/analysis tools: JTS HYQ XZH. Wrote the paper: JTS MZ.

                Article
                PONE-D-12-20752
                10.1371/journal.pone.0047657
                3474731
                23082189
                83802e75-e9e0-4656-b984-8e61b522093d
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 July 2012
                : 14 September 2012
                Page count
                Pages: 10
                Funding
                This work was supported by the National Basic Research Program of China (973 Program, 2010CB732605, 2011CB503906) and the National Nature Science Foundation of China (30728025, 30970709). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biophysics
                Biomechanics
                Biological Fluid Mechanics
                Molecular Cell Biology
                Gene Expression
                RNA interference
                Signal Transduction
                Mechanisms of Signal Transduction
                Cell Death
                Cell Growth
                Cellular Stress Responses
                Medicine
                Cardiovascular
                Aortic Diseases

                Uncategorized
                Uncategorized

                Comments

                Comment on this article