3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GFR Estimation After Cystatin C Reference Material Change

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Glomerular filtration rate (GFR) is routinely estimated with cystatin C. In June 2010, the International Federation of Clinical Chemistry (IFCC) released a certified cystatin C reference material (ERM-DA471/IFCC), and new cystatin C glomerular filtration rate estimation (eGFR) equations were developed with the IFCC standard. Early in 2018, Siemens discontinued their nonstandardized cystatin C reagent kits and replaced them with IFCC-calibrated kits in the US market. The aim of the current study was to assess the effect of IFCC calibration on cystatin C values and corresponding GFR estimations.

          Methods

          Cystatin C concentration was measured in 81 pediatric patients using a plasma sample from their nuclear GFR measurement with 99mTc-diethylenetriaminepentaaccetic acid. Calibration curves were generated using Siemens nonstandardized and IFCC-standardized kits to measure paired cystatin C concentrations in each sample. GFR-estimating equations using pre-IFCC and IFCC cystatin C values were compared using Bland-Altman analyses.

          Results

          The IFCC-standardized assay resulted in a mean increase in the measured cystatin C value of 24%. Estimating equations consistently overestimated GFR prior to IFCC standardization. Following incorporation of the IFCC standard, the Full Age Spectrum equation demonstrated the best overall performance, whereas the Chronic Kidney Disease in Children (CKiD) equation was more accurate in children with decreased GFR.

          Conclusion

          Incorporation of the IFCC standard significantly increased cystatin C values and affected the performance of GFR estimating equations. Clinical laboratories and providers may need to update the equation used for cystatin C–based estimation of GFR following adoption of the IFCC reference standard.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimating glomerular filtration rate from serum creatinine and cystatin C.

            Estimates of glomerular filtration rate (GFR) that are based on serum creatinine are routinely used; however, they are imprecise, potentially leading to the overdiagnosis of chronic kidney disease. Cystatin C is an alternative filtration marker for estimating GFR. Using cross-sectional analyses, we developed estimating equations based on cystatin C alone and in combination with creatinine in diverse populations totaling 5352 participants from 13 studies. These equations were then validated in 1119 participants from 5 different studies in which GFR had been measured. Cystatin and creatinine assays were traceable to primary reference materials. Mean measured GFRs were 68 and 70 ml per minute per 1.73 m(2) of body-surface area in the development and validation data sets, respectively. In the validation data set, the creatinine-cystatin C equation performed better than equations that used creatinine or cystatin C alone. Bias was similar among the three equations, with a median difference between measured and estimated GFR of 3.9 ml per minute per 1.73 m(2) with the combined equation, as compared with 3.7 and 3.4 ml per minute per 1.73 m(2) with the creatinine equation and the cystatin C equation (P=0.07 and P=0.05), respectively. Precision was improved with the combined equation (interquartile range of the difference, 13.4 vs. 15.4 and 16.4 ml per minute per 1.73 m(2), respectively [P=0.001 and P 30% of measured GFR, 8.5 vs. 12.8 and 14.1, respectively [P<0.001 for both comparisons]). In participants whose estimated GFR based on creatinine was 45 to 74 ml per minute per 1.73 m(2), the combined equation improved the classification of measured GFR as either less than 60 ml per minute per 1.73 m(2) or greater than or equal to 60 ml per minute per 1.73 m(2) (net reclassification index, 19.4% [P<0.001]) and correctly reclassified 16.9% of those with an estimated GFR of 45 to 59 ml per minute per 1.73 m(2) as having a GFR of 60 ml or higher per minute per 1.73 m(2). The combined creatinine-cystatin C equation performed better than equations based on either of these markers alone and may be useful as a confirmatory test for chronic kidney disease. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C

              The Chronic Kidney Disease in Children study is a cohort of about 600 children with chronic kidney disease (CKD) in the United States and Canada. The independent variable for our observations was a measurement of glomerular filtration rate (GFR) by iohexol disappearance (iGFR) at the first two visits one year apart and during alternate years thereafter. In a previous report, we had developed GFR estimating equations utilizing serum creatinine, blood urea nitrogen, height, gender and cystatin C measured by an immunoturbidimetric method; however the correlation coefficient of cystatin C and GFR (-0.69) was less robust than expected. Therefore, 495 samples were re-assayed using immunonephelometry. The reciprocal of immunonephelometric cystatin C was as well correlated with iGFR as was height/serum creatinine (both 0.88). We developed a new GFR estimating equation using a random 2/3 of 965 person-visits and applied it to the remaining 1/3 as a validation data set. In the validation data set, the correlation of the estimated GFR with iGFR was 0.92 with high precision and no bias; 91% and 45% of eGFR values were within 30% and 10% of iGFR, respectively. This equation works well in children with CKD in a range of GFR from 15 to 75 ml/min per 1.73 m2. Further studies are needed to establish the applicability to children of normal stature and muscle mass, and higher GFR.
                Bookmark

                Author and article information

                Contributors
                Journal
                Kidney Int Rep
                Kidney Int Rep
                Kidney International Reports
                Elsevier
                2468-0249
                07 December 2020
                February 2021
                07 December 2020
                : 6
                : 2
                : 429-436
                Affiliations
                [1 ]Division of Nephrology & Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
                [2 ]Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
                [3 ]Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
                [4 ]Department of Emergency Medicine, University of Cincinnati, Cincinnati, Ohio, USA
                Author notes
                [] Correspondence: Stefanie W. Benoit, 3333 Burnet Ave, ML 7022, Cincinnati, Ohio 45229, USA. Stefanie.Benoit@ 123456cchmc.org
                Article
                S2468-0249(20)31785-X
                10.1016/j.ekir.2020.11.028
                7879112
                33615068
                83bcd81e-b2a3-4f54-8383-9959980eaaf4
                © 2020 International Society of Nephrology. Published by Elsevier Inc.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 6 May 2020
                : 19 November 2020
                : 23 November 2020
                Categories
                Clinical Research

                cystatin c,clinical laboratory,equations,glomerular filtration rate,pediatric

                Comments

                Comment on this article