10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effects of Adipose Stem Cell–Conditioned Media on Fibrogenesis of Dermal Fibroblasts Stimulated by Transforming Growth Factor-β1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adipose-derived stem cells (ASCs) have been shown to enhance wound healing by human dermal fibroblasts; however, the interactions between ASCs and fibroblasts during injury remain unclear. Fibroblasts were treated with ASC-conditioned medium (ASC-CM) with and without transforming growth factor-β1 (TGF-β1) stimulation. Fibroblast proliferation, apoptosis, differentiation and expression of extracellular matrix genes and proteins, type I collagen, and type III collagen were measured. Also, wound-healing effect of ASC-CM was verified with in vivo animal study. ASC-CM inhibited proliferation and enhanced apoptosis of fibroblasts under TGF-β1 stimulation. Furthermore, 10% ASC-CM inhibited α-smooth muscle actin expression in fibroblasts, whereas 100% ASC-CM increased collagen, especially type III, expression in fibroblasts. ASC-CM was found to contain more basic fibroblast growth factor than hepatocyte growth factor, and 100% ASC-CM increased hepatocyte growth factor gene expression in fibroblasts. These results suggest ASCs affect fibrogenesis by dermal fibroblasts stimulated with TGF-β1 via paracrine signaling by adipocytokines present in ASC-CM. These results also suggest that higher concentrations of ASC-CM increase collagen production and inhibit fibroblast proliferation to avoid excessive fibrogenesis. We demonstrated that a lower ASC-CM concentration attenuated fibroblast differentiation. Additionally, 100% ASC-CM significantly reduced the wound size in an in vivo wound-healing model. In this study, we provided evidence that ASCs modulate fibrogenesis by fibroblasts via paracrine signaling, suggesting that application of ASCs during wound healing may improve the quality of wound repair.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Wound healing: an overview of acute, fibrotic and delayed healing.

          Acute wounds normally heal in a very orderly and efficient manner characterized by four distinct, but overlapping phases: hemostasis, inflammation, proliferation and remodeling. Specific biological markers characterize healing of acute wounds. Likewise, unique biologic markers also characterize pathologic responses resulting in fibrosis and chronic non-healing ulcers. This review describes the major biological processes associated with both normal and pathologic healing. The normal healing response begins the moment the tissue is injured. As the blood components spill into the site of injury, the platelets come into contact with exposed collagen and other elements of the extracellular matrix. This contact triggers the platelets to release clotting factors as well as essential growth factors and cytokines such as platelet-derived growth factor (PDGF) and transforming growth factor beta (TGF-beta). Following hemostasis, the neutrophils then enter the wound site and begin the critical task of phagocytosis to remove foreign materials, bacteria and damaged tissue. As part of this inflammatory phase, the macrophages appear and continue the process of phagocytosis as well as releasing more PDGF and TGF beta. Once the wound site is cleaned out, fibroblasts migrate in to begin the proliferative phase and deposit new extracellular matrix. The new collagen matrix then becomes cross-linked and organized during the final remodeling phase. In order for this efficient and highly controlled repair process to take place, there are numerous cell-signaling events that are required. In pathologic conditions such as non-healing pressure ulcers, this efficient and orderly process is lost and the ulcers are locked into a state of chronic inflammation characterized by abundant neutrophil infiltration with associated reactive oxygen species and destructive enzymes. Healing proceeds only after the inflammation is controlled. On the opposite end of the spectrum, fibrosis is characterized by excessive matrix deposition and reduced remodeling. Often fibrotic lesions are associated with increased densities of mast cells. By understanding the functional relationships of these biological processes of normal compared to abnormal wound healing, hopefully new strategies can be designed to treat the pathological conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The basic science of wound healing.

            Understanding wound healing today involves much more than simply stating that there are three phases: "inflammation, proliferation, and maturation." Wound healing is a complex series of reactions and interactions among cells and "mediators." Each year, new mediators are discovered and our understanding of inflammatory mediators and cellular interactions grows. This article will attempt to provide a concise report of the current literature on wound healing by first reviewing the phases of wound healing followed by "the players" of wound healing: inflammatory mediators (cytokines, growth factors, proteases, eicosanoids, kinins, and more), nitric oxide, and the cellular elements. The discussion will end with a pictorial essay summarizing the wound-healing process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypertrophic scars and keloids--a review of their pathophysiology, risk factors, and therapeutic management.

              Hypertrophic scars and keloids result from an abnormal fibrous wound healing process in which tissue repair and regeneration-regulating mechanism control is lost. These abnormal fibrous growths present a major therapeutic dilemma and challenge to the plastic surgeon because they are disfiguring and frequently recur. To provide updated clinical and experimental information on hypertrophic scars and keloids so that physicians can better understand and properly treat such lesions. A Medline literature search was performed for relevant publications and for diverse strategies for management of hypertrophic scars and keloids. The growing understanding of the molecular processes of normal and abnormal wound healing is promising for discovery of novel approaches for the management of hypertrophic scars and keloids. Although optimal treatment of these lesions remains undefined, successful healing can be achieved only with combined multidisciplinary therapeutic regimens.
                Bookmark

                Author and article information

                Journal
                J Burn Care Res
                J Burn Care Res
                jbcr
                Journal of Burn Care & Research: Official Publication of the American Burn Association
                Oxford University Press (US )
                1559-047X
                1559-0488
                Jan-Feb 2018
                27 December 2017
                27 December 2017
                : 39
                : 1
                : 129-140
                Affiliations
                [1 ]Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
                [2 ]Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane QLD, Australia
                Author notes
                Address correspondence to Huizhong Yang, MD, No.197 Ruijin 2nd Rd, Huangpu District, Shanghai 200025, China. E-mail: rjhburns@ 123456163.com .
                Article
                BCR.0000000000000558
                10.1097/BCR.0000000000000558
                6083853
                29931303
                83efc592-2f44-4d2f-99e9-d4bc530a95f8
                Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Burn Association.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 06 June 2016
                : 24 February 2018
                : 05 March 2018
                Page count
                Pages: 12
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81101433
                Categories
                Original Articles

                Comments

                Comment on this article