5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Out-of-time-order correlation at a quantum phase transition

      , , ,
      Physical Review B
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Many-Body Physics with Ultracold Gases

          This article reviews recent experimental and theoretical progress on many-body phenomena in dilute, ultracold gases. Its focus are effects beyond standard weak-coupling descriptions, like the Mott-Hubbard-transition in optical lattices, strongly interacting gases in one and two dimensions or lowest Landau level physics in quasi two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near Feshbach resonances in the BCS-BEC crossover.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Boson localization and the superfluid-insulator transition

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Gauge Theory Correlators from Non-Critical String Theory

              We suggest a means of obtaining certain Green's functions in 3+1-dimensional \({\cal N} = 4\) supersymmetric Yang-Mills theory with a large number of colors via non-critical string theory. The non-critical string theory is related to critical string theory in anti-deSitter background. We introduce a boundary of the anti-deSitter space analogous to a cut-off on the Liouville coordinate of the two-dimensional string theory. Correlation functions of operators in the gauge theory are related to the dependence of the supergravity action on the boundary conditions. From the quadratic terms in supergravity we read off the anomalous dimensions. For operators that couple to massless string states it has been established through absorption calculations that the anomalous dimensions vanish, and we rederive this result. The operators that couple to massive string states at level \(n\) acquire anomalous dimensions that grow as \(2\left (n g_{YM} \sqrt {2 N} )^{1/2}\) for large `t Hooft coupling. This is a new prediction about the strong coupling behavior of large \(N\) SYM theory.
                Bookmark

                Author and article information

                Journal
                PRBMDO
                Physical Review B
                Phys. Rev. B
                American Physical Society (APS)
                2469-9950
                2469-9969
                August 2017
                August 3 2017
                : 96
                : 5
                Article
                10.1103/PhysRevB.96.054503
                83f065c9-0bd7-4162-b05d-d9f4c2c29a35
                © 2017

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article