34
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 3.0 Impact Factor I 4.3 CiteScore I 0.695 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Gorilla and Orangutan Brains Conform to the Primate Cellular Scaling Rules: Implications for Human Evolution

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular scaling rules for rodent brains.

          How do cell number and size determine brain size? Here, we show that, in the order Rodentia, increased size of the cerebral cortex, cerebellum, and remaining areas across six species is achieved through greater numbers of neurons of larger size, and much greater numbers of nonneuronal cells of roughly invariant size, such that the ratio between total neuronal and nonneuronal mass remains constant across species. Although relative cerebellar size remains stable among rodents, the number of cerebellar neurons increases with brain size more rapidly than in the cortex, such that the cerebellar fraction of total brain neurons increases with brain size. In contrast, although the relative cortical size increases with total brain size, the cortical fraction of total brain neurons remains constant. We propose that the faster increase in average neuronal size in the cerebral cortex than in the cerebellum as these structures gain neurons and the rapidly increasing glial numbers that generate glial mass to match total neuronal mass at a fixed glia/neuron total mass ratio are fundamental cellular constraints that lead to the relative expansion of cerebral cortical volume across species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Overall Brain Size, and Not Encephalization Quotient, Best Predicts Cognitive Ability across Non-Human Primates

            For over a century, various neuroanatomical measures have been employed as assays of cognitive ability in comparative studies. Nevertheless, it is still unclear whether these measures actually correspond to cognitive ability. A recent meta-analysis of cognitive performance of a broad set of primate species has made it possible to provide a quantitative estimate of general cognitive ability across primates. We find that this estimate is not strongly correlated with neuroanatomical measures that statistically control for a possible effect of body size, such as encephalization quotient or brain size residuals. Instead, absolute brain size measures were the best predictors of primate cognitive ability. Moreover, there was no indication that neocortex-based measures were superior to measures based on the whole brain. The results of previous comparative studies on the evolution of intelligence must be reviewed with this conclusion in mind.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              New and Revised Data on Volumes of Brain Structures in Insectivores and Primates

                Bookmark

                Author and article information

                Journal
                BBE
                Brain Behav Evol
                10.1159/issn.0006-8977
                Brain, Behavior and Evolution
                S. Karger AG
                0006-8977
                1421-9743
                2011
                February 2011
                11 January 2011
                : 77
                : 1
                : 33-44
                Affiliations
                aInstituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, and Instituto Nacional de Neurociência Translacional, Rio de Janeiro, Brazil; bDepartment of Psychology, Vanderbilt University, Nashville, Tenn., USA
                Author notes
                *Suzana Herculano-Houzel, Instituto de Ciências Biomédicas, UFRJ, Rua Carlos Chagas Filho 337, Ilha do Fundão, Rio de Janeiro, RJ 21941-920 (Brazil), Tel. +55 21 2562 6390, Fax +55 21 2290 0587, E-Mail suzanahh@gmail.com
                Article
                322729 PMC3064932 Brain Behav Evol 2011;77:33–44
                10.1159/000322729
                PMC3064932
                21228547
                8408606d-e7d4-40d7-9ac6-0c1d491283e0
                © 2011 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 01 June 2010
                : 15 November 2010
                Page count
                Figures: 6, Tables: 4, Pages: 12
                Categories
                Original Paper

                Geriatric medicine,Neurology,Cardiovascular Medicine,Neurosciences,Clinical Psychology & Psychiatry,Public health
                Neurons, number,Allometry,Great apes,Evolution, human,Brain size,Human

                Comments

                Comment on this article