73
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biofilms are dynamic microbial communities in which transitions between planktonic and sessile modes of growth occur interchangeably in response to different environmental cues. In the last decade, early events associated with C. albicans biofilm formation have received considerable attention. However, very little is known about C. albicans biofilm dispersion or the mechanisms and signals that trigger it. This is important because it is precisely C. albicans cells dispersed from biofilms that are the main culprits associated with candidemia and establishment of disseminated invasive disease, two of the gravest forms of candidiasis. Using a simple flow biofilm model recently developed by our group, we have performed initial investigations into the phenomenon of C. albicans biofilm dispersion, as well as the phenotypic characteristics associated with dispersed cells. Our results indicate that C. albicans biofilm dispersion is dependent on growing conditions, including carbon source and pH of the media used for biofilm development. C. albicans dispersed cells are mostly in the yeast form and display distinct phenotypic properties compared to their planktonic counterparts, including enhanced adherence, filamentation, biofilm formation and, perhaps most importantly, increased pathogenicity in a murine model of hematogenously disseminated candidiasis, thus indicating that dispersed cells are armed with a complete arsenal of “virulence factors” important for seeding and establishing new foci of infection. In addition, utilizing genetically engineered strains of C. albicans ( tetO-UME6 and tetO-PES1) we demonstrate that C. albicans biofilm dispersion can be regulated by manipulating levels of expression of these key genes, further supporting the evidence for a strong link between biofilms and morphogenetic conversions at different stages of the C. albicans biofilm developmental cycle. Overall, our results offer novel and important insight into the phenomenon of C. albicans biofilm dispersion, a key part of the biofilm developmental cycle, and provide the basis for its more detailed analysis.

          Author Summary

          Candida albicans is the main causative agent of candidiasis, a difficult-to-treat infection that occurs mostly in severely immunosuppressed and other at-risk patients. Candidiasis is often associated with the formation of biofilms (attached microbial communities encapsulated within a protective matrix) on host surfaces and/or implantable medical devices, most notably intravascular catheters. In recent years, for C. albicans, the process of biofilm formation has received much attention. However, the same is not true for biofilm dispersion (the release of cells from the biofilm). This is important since these dispersed cells are responsible for the subsequent establishment of disseminated candidiasis at distal organs. Here we have taken advantage of a model of biofilm formation under conditions of flow recently described by our group to study and characterize the phenomenon of C. albicans biofilm dispersion. Rather than an end-stage process, our results indicate that dispersion occurs at all different stages of the biofilm developmental cycle and is influenced by nutritional and other physiochemical conditions. In addition, our findings provide initial insights into how this process is regulated at the molecular level. We also demonstrate that dispersed cells display distinct phenotypic properties that are associated with increased virulence, with important clinical repercussions.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance.

          Biofilms are a protected niche for microorganisms, where they are safe from antibiotic treatment and can create a source of persistent infection. Using two clinically relevant Candida albicans biofilm models formed on bioprosthetic materials, we demonstrated that biofilm formation proceeds through three distinct developmental phases. These growth phases transform adherent blastospores to well-defined cellular communities encased in a polysaccharide matrix. Fluorescence and confocal scanning laser microscopy revealed that C. albicans biofilms have a highly heterogeneous architecture composed of cellular and noncellular elements. In both models, antifungal resistance of biofilm-grown cells increased in conjunction with biofilm formation. The expression of agglutinin-like (ALS) genes, which encode a family of proteins implicated in adhesion to host surfaces, was differentially regulated between planktonic and biofilm-grown cells. The ability of C. albicans to form biofilms contrasts sharply with that of Saccharomyces cerevisiae, which adhered to bioprosthetic surfaces but failed to form a mature biofilm. The studies described here form the basis for investigations into the molecular mechanisms of Candida biofilm biology and antifungal resistance and provide the means to design novel therapies for biofilm-based infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol.

            The inoculum size effect in the dimorphic fungus Candida albicans results from production of an extracellular quorum-sensing molecule (QSM). This molecule prevents mycelial development in both a growth morphology assay and a differentiation assay using three chemically distinct triggers for germ tube formation (GTF): L-proline, N-acetylglucosamine, and serum (either pig or fetal bovine). In all cases, the presence of QSM prevents the yeast-to-mycelium conversion, resulting in actively budding yeasts without influencing cellular growth rates. QSM exhibits general cross-reactivity within C. albicans in that supernatants from strain A72 are active on five other strains of C. albicans and vice versa. The QSM excreted by C. albicans is farnesol (C(15)H(26)O; molecular weight, 222.37). QSM is extracellular, and is produced continuously during growth and over a temperature range from 23 to 43 degrees C, in amounts roughly proportional to the CFU/milliliter. Production is not dependent on the type of carbon source nor nitrogen source or on the chemical nature of the growth medium. Both commercial mixed isomer and (E,E)-farnesol exhibited QSM activity (the ability to prevent GTF) at a level sufficient to account for all the QSM activity present in C. albicans supernatants, i.e., 50% GTF at ca. 30 to 35 microM. Nerolidol was ca. two times less active than farnesol. Neither geraniol (C(10)), geranylgeraniol (C(20)), nor farnesyl pyrophosphate had any QSM activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A fatty acid messenger is responsible for inducing dispersion in microbial biofilms.

              It is well established that in nature, bacteria are found primarily as residents of surface-associated communities called biofilms. These structures form in a sequential process initiated by attachment of cells to a surface, followed by the formation of matrix-enmeshed microcolonies, and culminating in dispersion of the bacteria from the mature biofilm. In the present study, we have demonstrated that, during growth, Pseudomonas aeruginosa produces an organic compound we have identified as cis-2-decenoic acid, which is capable of inducing the dispersion of established biofilms and of inhibiting biofilm development. When added exogenously to P. aeruginosa PAO1 biofilms at a native concentration of 2.5 nM, cis-2-decenoic acid was shown to induce the dispersion of biofilm microcolonies. This molecule was also shown to induce dispersion of biofilms, formed by Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Streptococcus pyogenes, Bacillus subtilis, Staphylococcus aureus, and the yeast Candida albicans. Active at nanomolar concentrations, cis-2-decenoic acid appears to be functionally and structurally related to the class of short-chain fatty acid signaling molecules such as diffusible signal factor, which act as cell-to-cell communication molecules in bacteria and fungi.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                March 2010
                March 2010
                26 March 2010
                : 6
                : 3
                : e1000828
                Affiliations
                [1 ]Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
                [2 ]Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, United States of America
                [3 ]Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
                [4 ]Division of Infectious Diseases, Children's Hospital, Boston, Massachusetts, United States of America
                Washington University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: PU DK JLLR. Performed the experiments: PU AKC AS. Analyzed the data: PU AKC AKR DK JLLR. Contributed reagents/materials/analysis tools: AS MB AKR JRK DK. Wrote the paper: PU JRK DK JLLR.

                Article
                09-PLPA-RA-2053R2
                10.1371/journal.ppat.1000828
                2847914
                20360962
                84765d54-592f-403d-9352-c256850c5af3
                Uppuluri et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 November 2009
                : 18 February 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Infectious Diseases/Fungal Infections
                Microbiology
                Microbiology/Medical Microbiology
                Microbiology/Microbial Growth and Development

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article