104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Respiratory and haemodynamic changes during decremental open lung positive end-expiratory pressure titration in patients with acute respiratory distress syndrome

      research-article
      1 , 2 , 3 , 1 ,
      Critical Care
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          To investigate haemodynamic and respiratory changes during lung recruitment and decremental positive end-expiratory pressure (PEEP) titration for open lung ventilation in patients with acute respiratory distress syndrome (ARDS) a prospective, clinical trial was performed involving 12 adult patients with ARDS treated in the surgical intensive care unit in a university hospital.

          Methods

          A software programme (Open Lung Tool™) incorporated into a standard ventilator controlled the recruitment (pressure-controlled ventilation with fixed PEEP at 20 cmH 2O and increased driving pressures at 20, 25 and 30 cmH 2O for two minutes each) and PEEP titration (PEEP lowered by 2 cmH 2O every two minutes, with tidal volume set at 6 ml/kg). The open lung PEEP (OL-PEEP) was defined as the PEEP level yielding maximum dynamic respiratory compliance plus 2 cmH 2O. Gas exchange, respiratory mechanics and central haemodynamics using the Pulse Contour Cardiac Output Monitor (PiCCO™), as well as transoesophageal echocardiography were measured at the following steps: at baseline (T 0); during the final recruitment step with PEEP at 20 cmH 2O and driving pressure at 30 cmH 2O, (T 20/30); at OL-PEEP, following another recruitment manoeuvre (T OLP).

          Results

          The ratio of partial pressure of arterial oxygen (PaO 2) to fraction of inspired oxygen (FiO 2) increased from T 0 to T OLP (120 ± 59 versus 146 ± 64 mmHg, P < 0.005), as did dynamic respiratory compliance (23 ± 5 versus 27 ± 6 ml/cmH 2O, P < 0.005). At constant PEEP (14 ± 3 cmH 2O) and tidal volumes, peak inspiratory pressure decreased (32 ± 3 versus 29 ± 3 cmH 2O, P < 0.005), although partial pressure of arterial carbon dioxide (PaCO 2) was unchanged (58 ± 22 versus 53 ± 18 mmHg). No significant decrease in mean arterial pressure, stroke volume or cardiac output occurred during the recruitment (T 20/30). However, left ventricular end-diastolic area decreased at T 20/30 due to a decrease in the left ventricular end-diastolic septal-lateral diameter, while right ventricular end-diastolic area increased. Right ventricular function, estimated by the right ventricular Tei-index, deteriorated during the recruitment manoeuvre, but improved at T OLP.

          Conclusions

          A standardised open lung strategy increased oxygenation and improved respiratory system compliance. No major haemodynamic compromise was observed, although the increase in right ventricular Tei-index and right ventricular end-diastolic area and the decrease in left ventricular end-diastolic septal-lateral diameter during the recruitment suggested an increased right ventricular stress and strain. Right ventricular function was significantly improved at T OLP compared with T 0, although left ventricular function was unchanged, indicating effective lung volume optimisation.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          An expanded definition of the adult respiratory distress syndrome.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial.

            The need for lung protection is universally accepted, but the optimal level of positive end-expiratory pressure (PEEP) in patients with acute lung injury (ALI) or acute respiratory distress syndrome remains debated. To compare the effect on outcome of a strategy for setting PEEP aimed at increasing alveolar recruitment while limiting hyperinflation to one aimed at minimizing alveolar distension in patients with ALI. A multicenter randomized controlled trial of 767 adults (mean [SD] age, 59.9 [15.4] years) with ALI conducted in 37 intensive care units in France from September 2002 to December 2005. Tidal volume was set at 6 mL/kg of predicted body weight in both strategies. Patients were randomly assigned to a moderate PEEP strategy (5-9 cm H(2)O) (minimal distension strategy; n = 382) or to a level of PEEP set to reach a plateau pressure of 28 to 30 cm H(2)O (increased recruitment strategy; n = 385). The primary end point was mortality at 28 days. Secondary end points were hospital mortality at 60 days, ventilator-free days, and organ failure-free days at 28 days. The 28-day mortality rate in the minimal distension group was 31.2% (n = 119) vs 27.8% (n = 107) in the increased recruitment group (relative risk, 1.12 [95% confidence interval, 0.90-1.40]; P = .31). The hospital mortality rate in the minimal distension group was 39.0% (n = 149) vs 35.4% (n = 136) in the increased recruitment group (relative risk, 1.10 [95% confidence interval, 0.92-1.32]; P = .30). The increased recruitment group compared with the minimal distension group had a higher median number of ventilator-free days (7 [interquartile range {IQR}, 0-19] vs 3 [IQR, 0-17]; P = .04) and organ failure-free days (6 [IQR, 0-18] vs 2 [IQR, 0-16]; P = .04). This strategy also was associated with higher compliance values, better oxygenation, less use of adjunctive therapies, and larger fluid requirements. A strategy for setting PEEP aimed at increasing alveolar recruitment while limiting hyperinflation did not significantly reduce mortality. However, it did improve lung function and reduced the duration of mechanical ventilation and the duration of organ failure. clinicaltrials.gov Identifier: NCT00188058.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial.

              Low-tidal-volume ventilation reduces mortality in critically ill patients with acute lung injury and acute respiratory distress syndrome. Instituting additional strategies to open collapsed lung tissue may further reduce mortality. To compare an established low-tidal-volume ventilation strategy with an experimental strategy based on the original "open-lung approach," combining low tidal volume, lung recruitment maneuvers, and high positive-end-expiratory pressure. Randomized controlled trial with concealed allocation and blinded data analysis conducted between August 2000 and March 2006 in 30 intensive care units in Canada, Australia, and Saudi Arabia. Nine hundred eighty-three consecutive patients with acute lung injury and a ratio of arterial oxygen tension to inspired oxygen fraction not exceeding 250. The control strategy included target tidal volumes of 6 mL/kg of predicted body weight, plateau airway pressures not exceeding 30 cm H2O, and conventional levels of positive end-expiratory pressure (n = 508). The experimental strategy included target tidal volumes of 6 mL/kg of predicted body weight, plateau pressures not exceeding 40 cm H2O, recruitment maneuvers, and higher positive end-expiratory pressures (n = 475). All-cause hospital mortality. Eighty-five percent of the 983 study patients met criteria for acute respiratory distress syndrome at enrollment. Tidal volumes remained similar in the 2 groups, and mean positive end-expiratory pressures were 14.6 (SD, 3.4) cm H2O in the experimental group vs 9.8 (SD, 2.7) cm H2O among controls during the first 72 hours (P < .001). All-cause hospital mortality rates were 36.4% and 40.4%, respectively (relative risk [RR], 0.90; 95% confidence interval [CI], 0.77-1.05; P = .19). Barotrauma rates were 11.2% and 9.1% (RR, 1.21; 95% CI, 0.83-1.75; P = .33). The experimental group had lower rates of refractory hypoxemia (4.6% vs 10.2%; RR, 0.54; 95% CI, 0.34-0.86; P = .01), death with refractory hypoxemia (4.2% vs 8.9%; RR, 0.56; 95% CI, 0.34-0.93; P = .03), and previously defined eligible use of rescue therapies (5.1% vs 9.3%; RR, 0.61; 95% CI, 0.38-0.99; P = .045). For patients with acute lung injury and acute respiratory distress syndrome, a multifaceted protocolized ventilation strategy designed to recruit and open the lung resulted in no significant difference in all-cause hospital mortality or barotrauma compared with an established low-tidal-volume protocolized ventilation strategy. This "open-lung" strategy did appear to improve secondary end points related to hypoxemia and use of rescue therapies. clinicaltrials.gov Identifier: NCT00182195.
                Bookmark

                Author and article information

                Journal
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2009
                17 April 2009
                : 13
                : 2
                : R59
                Affiliations
                [1 ]Department of Anesthesiology and Critical Care Medicine, University Hospital Mannheim, Faculty of Medicine, University of Heidelberg, Theodor-Kutzer Ufer, 68165 Mannheim, Germany
                [2 ]Department of Anesthesiology an Critical Care Medicine, Robert-Bosch Hospital, Auerbachstrasse 110, 70376 Stuttgart, Germany
                [3 ]Department of Ambient, Health and Safety, University of Insubria, c/o Villa Toeplitz Via G.B. Vico, 46 21100 Varese, Italy
                Article
                cc7786
                10.1186/cc7786
                2689506
                19374751
                8494319c-78e7-4e82-9cbf-451639b1654d
                Copyright © 2009 Gernoth et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 January 2009
                : 23 February 2009
                : 6 March 2009
                : 17 April 2009
                Categories
                Research

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article