50
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change

      research-article
      a , 1 , 1 , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. We quantify here for the first time the global sanitation crisis through its impact on organic river pollution from the threats of (1) increasing wastewater discharge due to urbanization and intensification of livestock farming, and (2) reductions in river dilution capacity due to climate change and water extractions. Using in-stream Biochemical Oxygen Demand (BOD) as an overall indicator of organic river pollution, we calculate historical (2000) and future (2050) BOD concentrations in global river networks. Despite significant self-cleaning capacities of rivers, the number of people affected by organic pollution (BOD >5 mg/l) is projected to increase from 1.1 billion in 2000 to 2.5 billion in 2050. With developing countries disproportionately affected, our results point to a growing need for affordable wastewater solutions.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: not found
          • Article: not found

          Cities lead the way in climate-change action.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale.

            Organic chemicals can contribute to local and regional losses of freshwater biodiversity and ecosystem services. However, their overall relevance regarding larger spatial scales remains unknown. Here, we present, to our knowledge, the first risk assessment of organic chemicals on the continental scale comprising 4,000 European monitoring sites. Organic chemicals were likely to exert acute lethal and chronic long-term effects on sensitive fish, invertebrate, or algae species in 14% and 42% of the sites, respectively. Of the 223 chemicals monitored, pesticides, tributyltin, polycyclic aromatic hydrocarbons, and brominated flame retardants were the major contributors to the chemical risk. Their presence was related to agricultural and urban areas in the upstream catchment. The risk of potential acute lethal and chronic long-term effects increased with the number of ecotoxicologically relevant chemicals analyzed at each site. As most monitoring programs considered in this study only included a subset of these chemicals, our assessment likely underestimates the actual risk. Increasing chemical risk was associated with deterioration in the quality status of fish and invertebrate communities. Our results clearly indicate that chemical pollution is a large-scale environmental problem and requires far-reaching, holistic mitigation measures to preserve and restore ecosystem health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global analysis of river systems: from Earth system controls to Anthropocene syndromes.

              Continental aquatic systems from rivers to the coastal zone are considered within two perspectives: (i) as a major link between the atmosphere, pedosphere, biosphere and oceans within the Earth system with its Holocene dynamics, and (ii) as water and aquatic biota resources progressively used and transformed by humans. Human pressures have now reached a state where the continental aquatic systems can no longer be considered as being controlled by only Earth system processes, thus defining a new era, the Anthropocene. Riverine changes, now observed at the global scale, are described through a first set of syndromes (flood regulation, fragmentation, sediment imbalance, neo-arheism, salinization, chemical contamination, acidification, eutrophication and microbial contamination) with their related causes and symptoms. These syndromes have direct influences on water uses, either positive or negative. They also modify some Earth system key functions such as sediment, water, nutrient and carbon balances, greenhouse gas emissions and aquatic biodiversity. Evolution of river syndromes over the past 2000 years is complex: it depends upon the stages of regional human development and on natural conditions, as illustrated here for the chemical contamination syndrome. River damming, eutrophication and generalized decrease of river flow due to irrigation are some of the other global features of river changes. Future management of river systems should also consider these long-term impacts on the Earth system.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                23 February 2017
                2017
                : 7
                : 43289
                Affiliations
                [1 ]Department of Water Management, Delft University of Technology , Stevinweg 1, 2628CN, Delft, The Netherlands
                Author notes
                Article
                srep43289
                10.1038/srep43289
                5322379
                28230079
                84a1bfcd-12fd-4c3b-a6ef-025e5ee1889f
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 21 September 2016
                : 23 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article