5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ultra-selective cycloaddition of dimethylfuran for renewable p-xylene with H-BEA

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: not found
          • Article: not found

          Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phase modifiers promote efficient production of hydroxymethylfurfural from fructose.

            Furan derivatives obtained from renewable biomass resources have the potential to serve as substitutes for the petroleum-based building blocks that are currently used in the production of plastics and fine chemicals. We developed a process for the selective dehydration of fructose to 5-hydroxymethylfurfural (HMF) that operates at high fructose concentrations (10 to 50 weight %), achieves high yields (80% HMF selectivity at 90% fructose conversion), and delivers HMF in a separation-friendly solvent. In a two-phase reactor system, fructose is dehydrated in the aqueous phase with the use of an acid catalyst (hydrochloric acid or an acidic ion-exchange resin) with dimethylsulfoxide and/or poly(1-vinyl-2-pyrrolidinone) added to suppress undesired side reactions. The HMF product is continuously extracted into an organic phase (methylisobutylketone) modified with 2-butanol to enhance partitioning from the reactive aqueous solution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water.

              The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup (HFCS; reaction performed by enzyme catalysts) and recently is being considered as an intermediate step in the possible route of biomass to fuels and chemicals. Here, it is shown that a large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity. Specifically, a 10% (wt/wt) glucose solution containing a catalytic amount of Sn-Beta (150 Sn:glucose molar ratio) gives product yields of approximately 46% (wt/wt) glucose, 31% (wt/wt) fructose, and 9% (wt/wt) mannose after 30 min and 12 min of reaction at 383 K and 413 K, respectively. This reactivity is achieved also when a 45 wt% glucose solution is used. The properties of the large-pore zeolite greatly influence the reaction behavior because the reaction does not proceed with a medium-pore zeolite, and the isomerization activity is considerably lower when the metal centers are incorporated in ordered mesoporous silica (MCM-41). The Sn-Beta catalyst can be used for multiple cycles, and the reaction stops when the solid is removed, clearly indicating that the catalysis is occurring heterogeneously. Most importantly, the Sn-Beta catalyst is able to perform the isomerization reaction in highly acidic, aqueous environments with equivalent activity and product distribution as in media without added acid. This enables Sn-Beta to couple isomerizations with other acid-catalyzed reactions, including hydrolysis/isomerization or isomerization/dehydration reaction sequences [starch to fructose and glucose to 5-hydroxymethylfurfural (HMF) demonstrated here].
                Bookmark

                Author and article information

                Journal
                GRCHFJ
                Green Chem.
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                2014
                2014
                : 16
                : 2
                : 585-588
                Article
                10.1039/C3GC40740C
                84b7ba7e-6d1f-48cb-92b1-b30d5382c0dd
                © 2014
                History

                Comments

                Comment on this article