11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TRPV1 Hyperfunction Involved in Uremic Toxin Indoxyl Sulfate-Mediated Renal Tubular Damage

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Indoxyl sulfate (IS) is accumulated during severe renal insufficiency and known for its nephrotoxic properties. Transient receptor potential vanilloid 1 (TRPV1) is present in the kidney and acts as a renal sensor. However, the mechanism underlying IS-mediated renal tubular damage in view of TRPV1 is lacking. Here, we demonstrated that TRPV1 was expressed in tubular cells of Lilly Laboratories cell-porcine kidney 1 (LLC-PK 1) and Madin-Darby canine kidney cells (MDCK). IS treatment in both cells exhibited tubular damage with increased LDH release and reduced cell viability in dose- and time-dependent manners. MDCK, however, was more vulnerable to IS. We, therefore, investigated MDCK cells to explore a more detailed mechanism. Interestingly, IS-induced tubular damage was markedly attenuated in the presence of selective TRPV1 blockers. IS showed no effect on TRPV1 expression but significantly increased arachidonate 12-lipoxygenase (ALOX12) protein, mRNA expression, and 12( S)-hydroxyeicosatetraenoic acid (12( S)-HETE) amounts in a dose-dependent manner, indicating that the ALOX12/12( S)-HETE pathway induced TRPV1 hyperfunction in IS-mediated tubulotoxicity. Blockade of ALOX12 by cinnamyl-3,4-dihydroxy-α-cyanocinnamate or baicalein attenuated the effects of IS. Since aryl hydrocarbon receptor (AhR) activation after IS binding is crucial in mediating cell death, here, we found that the AhR blockade not only ameliorated tubular damage but also attenuated ALOX12 expression and 12( S)-HETE production caused by IS. The uremic toxic adsorbent AST-120, however, showed little effect on ALOX12 and 12( S)-HETE, as well as IS-induced cell damage. These results clearly indicated that IS activated AhR and then upregulated ALOX12, and this induced endovanilloid 12( S)-HETE synthesis and contributed to TRPV1 hyperfunction in IS-treated tubular cells. Further study on TRPV1 may attenuate kidney susceptibility to the functional loss of end-stage kidney disease via IS.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances.

          Capsaicin, a pungent ingredient of hot peppers, causes excitation of small sensory neurons, and thereby produces severe pain. A nonselective cation channel activated by capsaicin has been identified in sensory neurons and a cDNA encoding the channel has been cloned recently. However, an endogenous activator of the receptor has not yet been found. In this study, we show that several products of lipoxygenases directly activate the capsaicin-activated channel in isolated membrane patches of sensory neurons. Among them, 12- and 15-(S)-hydroperoxyeicosatetraenoic acids, 5- and 15-(S)-hydroxyeicosatetraenoic acids, and leukotriene B(4) possessed the highest potency. The eicosanoids also activated the cloned capsaicin receptor (VR1) expressed in HEK cells. Prostaglandins and unsaturated fatty acids failed to activate the channel. These results suggest a novel signaling mechanism underlying the pain sensory transduction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid.

            Arachidonic acid can be oxygenated by a variety of different enzymes, including lipoxygenases, cyclooxygenases, and cytochrome P450s, and can be converted to a complex mixture of oxygenated products as a result of lipid peroxidation. The initial products in these reactions are hydroperoxyeicosatetraenoic acids (HpETEs) and hydroxyeicosatetraenoic acids (HETEs). Oxoeicosatetraenoic acids (oxo-ETEs) can be formed by the actions of various dehydrogenases on HETEs or by dehydration of HpETEs. Although a large number of different HETEs and oxo-ETEs have been identified, this review will focus principally on 5-oxo-ETE, 5S-HETE, 12S-HETE, and 15S-HETE. Other related arachidonic acid metabolites will also be discussed in less detail. 5-Oxo-ETE is synthesized by oxidation of the 5-lipoxygenase product 5S-HETE by the selective enzyme, 5-hydroxyeicosanoid dehydrogenase. It actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, suggesting that it may be important in eosinophilic diseases such as asthma. 5-Oxo-ETE also appears to stimulate tumor cell proliferation and may also be involved in cancer. Highly selective and potent OXE receptor antagonists have recently become available and could help to clarify its pathophysiological role. The 12-lipoxygenase product 12S-HETE acts by the GPR31 receptor and promotes tumor cell proliferation and metastasis and could therefore be a promising target in cancer therapy. It may also be involved as a proinflammatory mediator in diabetes. In contrast, 15S-HETE may have a protective effect in cancer. In addition to GPCRs, higher concentration of HETEs and oxo-ETEs can activate peroxisome proliferator-activated receptors (PPARs) and could potentially regulate a variety of processes by this mechanism. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity.

              In uremic patients, various uremic toxins are accumulated and exert various biologic effects on uremia. Indoxyl sulfate (IS) is one of uremic toxins that is derived from dietary protein, and serum levels of IS are markedly increased in both uremic rats and patients. It has been previously reported that the accumulation of IS promotes the progression of chronic renal failure (CRF). This study demonstrates the role of rat organic anion transporters (rOATs) in the transport of IS and the induction of its nephrotoxicity. The administration of IS to 5/6-nephrectomized rats caused a faster progression of CRF, and immunohistochemistry revealed that IS was detected in the proximal and distal tubules where rOAT1 (proximal tubules) and/or rOAT3 (proximal and distal tubules) were also shown to be localized. In in vitro study, the proximal tubular cells derived from mouse that stably express rOAT1 (S2 rOAT1) and rOAT3 (S2 rOAT3) were established. IS inhibited organic anion uptake by S2 rOAT1 and S2 rOAT3, and the Ki values were 34.2 and 74.4 microM, respectively. Compared with mock, S2 rOAT1 and S2 rOAT3 exhibited higher levels of IS uptake, which was inhibited by probenecid and cilastatin, organic anion transport inhibitors. The addition of IS induced a decrease in the viability of S2 rOAT1 and S2 rOAT3 as compared with the mock, which was rescued by probenecid. These results suggest that rOAT1 and rOAT3 play an important role in the transcellular transport of IS and the induction of its nephrotoxicity.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                27 August 2020
                September 2020
                : 21
                : 17
                : 6212
                Affiliations
                [1 ]Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei City 24205, Taiwan; janlin0123@ 123456gmail.com
                [2 ]School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; liaoch22@ 123456gmail.com
                [3 ]Divisions of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
                [4 ]Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; kuochenglu@ 123456gmail.com
                Author notes
                Author information
                https://orcid.org/0000-0002-9452-5179
                Article
                ijms-21-06212
                10.3390/ijms21176212
                7503230
                84f5297d-275e-402a-83d1-0220a5725ca2
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 July 2020
                : 26 August 2020
                Categories
                Article

                Molecular biology
                transient receptor potential vanilloid 1,indoxyl sulfate,aryl hydrocarbon receptor,arachidonate 12-lipoxygenase,12(s)-hydroxyeicosatetraenoic acid,renal tubular damage

                Comments

                Comment on this article