Search for authorsSearch for similar articles
9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before September 30, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Endoplasmic Reticulum Stress in the Kidney as a Novel Mediator of Kidney Injury

      review-article
      Cardiorenal Medicine
      S. Karger AG
      Chronic kidney disease, Acute kidney injury, GRP78, IRE1, PERK, ATF6, Oxidative stress, Inflammation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The endoplasmic reticulum (ER) plays an important role in the maintenance of protein homeostasis through its control of the concentration, conformation, folding, and trafficking of client proteins. Disturbances such as hypoxia, glucose depletion, and oxidative stress may lead to ER dysfunction, which can induce ER stress and the subsequent unfolded protein response (UPR). The UPR initially serves as an adaptive response, but will also induce apoptosis in cells under severe or prolonged ER stress. Oxidative stress and inflammation are compounded by ER stress via the UPR, suggesting the potential pathophysiological significance of this response across a wide range of diseases. Accumulating evidence indicates that ER stress contributes to glomerular and tubular damage in patients with acute and chronic kidney disease. In glomeruli, podocyte or mesangial dysfunction tends to induce the adaptive UPR, which involves ER chaperone expression and the attenuation of protein translation, to maintain ER homeostasis and ensure cell survival. In tubules, apoptosis resulting from epithelial cell damage is caused, at least in part, by the proapoptotic UPR. These findings emphasize the possibility of the development of novel renoprotective drugs which target ER stress.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Endoplasmic reticulum stress: cell life and death decisions.

          C. Xu (2005)
          Disturbances in the normal functions of the ER lead to an evolutionarily conserved cell stress response, the unfolded protein response, which is aimed initially at compensating for damage but can eventually trigger cell death if ER dysfunction is severe or prolonged. The mechanisms by which ER stress leads to cell death remain enigmatic, with multiple potential participants described but little clarity about which specific death effectors dominate in particular cellular contexts. Important roles for ER-initiated cell death pathways have been recognized for several diseases, including hypoxia, ischemia/reperfusion injury, neurodegeneration, heart disease, and diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum.

            Cellular stress, particularly in response to toxic and metabolic insults that perturb function of the endoplasmic reticulum (ER stress), is a powerful inducer of the transcription factor CHOP. The role of CHOP in the response of cells to injury associated with ER stress was examined in a murine deficiency model obtained by homologous recombination at the chop gene. Compared with the wild type, mouse embryonic fibroblasts (MEFs) derived from chop -/- animals exhibited significantly less programmed cell death when challenged with agents that perturb ER function. A similar deficit in programmed cells death in response to ER stress was also observed in MEFs that lack CHOP's major dimerization partner, C/EBPbeta, implicating the CHOP-C/EBP pathway in programmed cell death. An animal model for studying the effects of chop on the response to ER stress was developed. It entailed exposing mice with defined chop genotypes to a single sublethal intraperitoneal injection of tunicamycin and resulted in a severe illness characterized by transient renal insufficiency. In chop +/+ and chop +/- mice this was associated with the early expression of CHOP in the proximal tubules followed by the development of a histological picture similar to the human condition known as acute tubular necrosis, a process that resolved by cellular regeneration. In the chop -/- animals, in spite of the severe impairment in renal function, evidence of cellular death in the kidney was reduced compared with the wild type. The proximal tubule epithelium of chop -/- animals exhibited fourfold lower levels of TUNEL-positive cells (a marker for programmed cell death), and significantly less evidence for subsequent regeneration. CHOP therefore has a role in the induction of cell death under conditions associated with malfunction of the ER and may also have a role in cellular regeneration under such circumstances.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls.

                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2009
                May 2009
                03 April 2009
                : 112
                : 1
                : e1-e9
                Affiliations
                Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan
                Article
                210573 Nephron Exp Nephrol 2009;112:e1–e9
                10.1159/000210573
                19342868
                8529b9dc-adc1-4957-9c48-9cd3822355d8
                © 2009 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 1, Tables: 2, References: 63, Pages: 1
                Categories
                Minireview

                Cardiovascular Medicine,Nephrology
                Chronic kidney disease,Acute kidney injury,GRP78,IRE1,PERK,ATF6,Oxidative stress,Inflammation

                Comments

                Comment on this article