34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A review of high value-added molecules production by microalgae in light of the classification

      , ,
      Biotechnology Advances
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references204

          • Record: found
          • Abstract: found
          • Article: not found

          Polyphenols: food sources and bioavailability.

          Polyphenols are abundant micronutrients in our diet, and evidence for their role in the prevention of degenerative diseases such as cancer and cardiovascular diseases is emerging. The health effects of polyphenols depend on the amount consumed and on their bioavailability. In this article, the nature and contents of the various polyphenols present in food sources and the influence of agricultural practices and industrial processes are reviewed. Estimates of dietary intakes are given for each class of polyphenols. The bioavailability of polyphenols is also reviewed, with particular focus on intestinal absorption and the influence of chemical structure (eg, glycosylation, esterification, and polymerization), food matrix, and excretion back into the intestinal lumen. Information on the role of microflora in the catabolism of polyphenols and the production of some active metabolites is presented. Mechanisms of intestinal and hepatic conjugation (methylation, glucuronidation, sulfation), plasma transport, and elimination in bile and urine are also described. Pharmacokinetic data for the various polyphenols are compared. Studies on the identification of circulating metabolites, cellular uptake, intracellular metabolism with possible deconjugation, biological properties of the conjugated metabolites, and specific accumulation in some target tissues are discussed. Finally, bioavailability appears to differ greatly between the various polyphenols, and the most abundant polyphenols in our diet are not necessarily those that have the best bioavailability profile. A thorough knowledge of the bioavailability of the hundreds of dietary polyphenols will help us to identify those that are most likely to exert protective health effects.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement.

              Comparing photosynthetic and photovoltaic efficiencies is not a simple issue. Although both processes harvest the energy in sunlight, they operate in distinctly different ways and produce different types of products: biomass or chemical fuels in the case of natural photosynthesis and nonstored electrical current in the case of photovoltaics. In order to find common ground for evaluating energy-conversion efficiency, we compare natural photosynthesis with present technologies for photovoltaic-driven electrolysis of water to produce hydrogen. Photovoltaic-driven electrolysis is the more efficient process when measured on an annual basis, yet short-term yields for photosynthetic conversion under optimal conditions come within a factor of 2 or 3 of the photovoltaic benchmark. We consider opportunities in which the frontiers of synthetic biology might be used to enhance natural photosynthesis for improved solar energy conversion efficiency.
                Bookmark

                Author and article information

                Journal
                Biotechnology Advances
                Biotechnology Advances
                Elsevier BV
                07349750
                July 2020
                July 2020
                : 41
                : 107545
                Article
                10.1016/j.biotechadv.2020.107545
                32272160
                852b3cd7-d934-4355-9acf-07ce6c8eec88
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article