38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          A decade after SARS: strategies for controlling emerging coronaviruses

          Key Points Two highly pathogenic human coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), have emerged in the past decade. The lack of any clinically approved antiviral treatments or vaccines for either virus emphasizes the importance of the design of effective therapeutics and preventives. Bats have been implicated as reservoirs of both SARS-CoV and MERS-CoV as well as related viruses and other human coronaviruses (HCoVs), such as HCoV-229E and HCoV-NL63. The dispersion of bat species over much of the globe probably enhances their potential to act as reservoirs for pathogens, some of which are extremely virulent and potentially lethal to other animals and humans. Multiple animal models for SARS-CoV infection exist, although mouse models have been the most thoroughly characterized. Mouse-adapted SARS-CoV is capable of causing pathology that is representative of human infections in both young and aged animals. Small animal models for MERS-CoV infection have not yet been reported, although the possibility of further ongoing selection in the receptor-binding sequence in the spike protein or other sequences that are important for host specificity might contribute to this limitation. A mild disease phenotype that can include either localized or widespread pneumonia is observed in inoculated macaques. Multiple vaccine strategies have been attempted with coronaviruses, mostly (but not exclusively) targeting the spike glycoprotein. Successful live-attenuated vaccines have utilized reverse genetic strategies to delete the envelope protein or inactivate the exonuclease activity of non-structural protein 14 (nsp14) . MERS-CoV, similarly to SARS-CoV in 2003, has the potential to have a profound impact on the human population; however, its low penetrance thus far suggests that the virus might either ultimately fail to develop a niche in humans or it might still be adapting to human hosts and that the worst of its effects are yet to come. Coronavirus phylogeny shows an incredible diversity in antigenic variants, which leads to limited cross-protection against infection with different strains, even within a phylogenetic subcluster. Consequently, the risk of introducing novel coronaviruses into naive human and animal populations remains high. Supplementary information The online version of this article (doi:10.1038/nrmicro3143) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Family Cluster of Middle East Respiratory Syndrome Coronavirus Infections

            A human coronavirus, called the Middle East respiratory syndrome coronavirus (MERS-CoV), was first identified in September 2012 in samples obtained from a Saudi Arabian businessman who died from acute respiratory failure. Since then, 49 cases of infections caused by MERS-CoV (previously called a novel coronavirus) with 26 deaths have been reported to date. In this report, we describe a family case cluster of MERS-CoV infection, including the clinical presentation, treatment outcomes, and household relationships of three young men who became ill with MERS-CoV infection after the hospitalization of an elderly male relative, who died of the disease. Twenty-four other family members living in the same household and 124 attending staff members at the hospitals did not become ill. MERS-CoV infection may cause a spectrum of clinical illness. Although an animal reservoir is suspected, none has been discovered. Meanwhile, global concern rests on the ability of MERS-CoV to cause major illness in close contacts of patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus

              Summary Objectives Middle East respiratory syndrome coronavirus (MERS-CoV) has emerged to cause fatal infections in patients in the Middle East and traveler-associated secondary cases in Europe and Africa. Person-to-person transmission is evident in outbreaks involving household and hospital contacts. Effective antivirals are urgently needed. Methods We used small compound-based forward chemical genetics to screen a chemical library of 1280 known drugs against influenza A virus in Biosafety Level-2 laboratory. We then assessed the anti-MERS-CoV activities of the identified compounds and of interferons, nelfinavir, and lopinavir because of their reported anti-coronavirus activities in terms of cytopathic effect inhibition, viral yield reduction, and plaque reduction assays in Biosafety Level-3 laboratory. Results Ten compounds were identified as primary hits in high-throughput screening. Only mycophenolic acid exhibited low EC50 and high selectivity index. Additionally, ribavirin and interferons also exhibited in-vitro anti-MERS-CoV activity. The serum concentrations achievable at therapeutic doses of mycophenolic acid and interferon-β1b were 60–300 and 3–4 times higher than the concentrations at which in-vitro anti-MERS-CoV activities were demonstrated, whereas that of ribavirin was ∼2 times lower. Combination of mycophenolic acid and interferon-β1b lowered the EC50 of each drug by 1–3 times. Conclusions Interferon-β1b with mycophenolic acid should be considered in treatment trials of MERS.
                Bookmark

                Author and article information

                Journal
                Sci Transl Med
                Science translational medicine
                1946-6242
                1946-6234
                Aug 19 2015
                : 7
                : 301
                Affiliations
                [1 ] Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
                [2 ] Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA.
                [3 ] Special Pathogens Program, University of Manitoba and Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.
                [4 ] Inovio Pharmaceuticals Inc., Plymouth Meeting, PA 19462, USA.
                [5 ] Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA.
                [6 ] Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
                [7 ] Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
                [8 ] Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA. dbweiner@mail.med.upenn.edu.
                Article
                7/301/301ra132 NIHMS720676
                10.1126/scitranslmed.aac7462
                26290414
                854953fc-c09d-4597-8a3f-6041b5d6d68c
                Copyright © 2015, American Association for the Advancement of Science.
                History

                Comments

                Comment on this article