0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Calcium Signaling Silencing in Atrial Fibrillation: Implications for Atrial Sodium Homeostasis

      , , ,
      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atrial fibrillation (AF) is the most common type of cardiac arrhythmia, affecting more than 33 million people worldwide. Despite important advances in therapy, AF’s incidence remains high, and treatment often results in recurrence of the arrhythmia. A better understanding of the cellular and molecular changes that (1) trigger AF and (2) occur after the onset of AF will help to identify novel therapeutic targets. Over the past 20 years, a large body of research has shown that intracellular Ca2+ handling is dramatically altered in AF. While some of these changes are arrhythmogenic, other changes counteract cellular arrhythmogenic mechanisms (Calcium Signaling Silencing). The intracellular Na+ concentration ([Na+])i is a key regulator of intracellular Ca2+ handling in cardiac myocytes. Despite its importance in the regulation of intracellular Ca2+ handling, little is known about [Na+]i, its regulation, and how it might be changed in AF. Previous work suggests that there might be increases in the late component of the atrial Na+ current (INa,L) in AF, suggesting that [Na+]i levels might be high in AF. Indeed, a pharmacological blockade of INa,L has been suggested as a treatment for AF. Here, we review calcium signaling silencing and changes in intracellular Na+ homeostasis during AF. We summarize the proposed arrhythmogenic mechanisms associated with increases in INa,L during AF and discuss the evidence from clinical trials that have tested the pharmacological INa,L blocker ranolazine in the treatment of AF.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study.

          The global burden of atrial fibrillation (AF) is unknown. We systematically reviewed population-based studies of AF published from 1980 to 2010 from the 21 Global Burden of Disease regions to estimate global/regional prevalence, incidence, and morbidity and mortality related to AF (DisModMR software). Of 377 potential studies identified, 184 met prespecified eligibility criteria. The estimated number of individuals with AF globally in 2010 was 33.5 million (20.9 million men [95% uncertainty interval (UI), 19.5-22.2 million] and 12.6 million women [95% UI, 12.0-13.7 million]). Burden associated with AF, measured as disability-adjusted life-years, increased by 18.8% (95% UI, 15.8-19.3) in men and 18.9% (95% UI, 15.8-23.5) in women from 1990 to 2010. In 1990, the estimated age-adjusted prevalence rates of AF (per 100 000 population) were 569.5 in men (95% UI, 532.8-612.7) and 359.9 in women (95% UI, 334.7-392.6); the estimated age-adjusted incidence rates were 60.7 per 100 000 person-years in men (95% UI, 49.2-78.5) and 43.8 in women (95% UI, 35.9-55.0). In 2010, the prevalence rates increased to 596.2 (95% UI, 558.4-636.7) in men and 373.1 (95% UI, 347.9-402.2) in women; the incidence rates increased to 77.5 (95% UI, 65.2-95.4) in men and 59.5 (95% UI, 49.9-74.9) in women. Mortality associated with AF was higher in women and increased by 2-fold (95% UI, 2.0-2.2) and 1.9-fold (95% UI, 1.8-2.0) in men and women, respectively, from 1990 to 2010. There was evidence of significant regional heterogeneity in AF estimations and availability of population-based data. These findings provide evidence of progressive increases in overall burden, incidence, prevalence, and AF-associated mortality between 1990 and 2010, with significant public health implications. Systematic, regional surveillance of AF is required to better direct prevention and treatment strategies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Calcium and Excitation-Contraction Coupling in the Heart

              Cardiac contractility is regulated by changes in intracellular Ca concentration ([Ca2+]i). Normal function requires that [Ca2+]i be sufficiently high in systole and low in diastole. Much of the Ca needed for contraction comes from the sarcoplasmic reticulum and is released by the process of calcium-induced calcium release. The factors that regulate and fine-tune the initiation and termination of release are reviewed. The precise control of intracellular Ca cycling depends on the relationships between the various channels and pumps that are involved. We consider 2 aspects: (1) structural coupling: the transporters are organized within the dyad, linking the transverse tubule and sarcoplasmic reticulum and ensuring close proximity of Ca entry to sites of release. (2) Functional coupling: where the fluxes across all membranes must be balanced such that, in the steady state, Ca influx equals Ca efflux on every beat. The remainder of the review considers specific aspects of Ca signaling, including the role of Ca buffers, mitochondria, Ca leak, and regulation of diastolic [Ca2+]i.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                October 2021
                September 29 2021
                : 22
                : 19
                : 10513
                Article
                10.3390/ijms221910513
                857a8f5f-d9ca-4217-8df7-7fd2cecc7dd2
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article