17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Assurance of neuroattenuation of a live vaccine against West Nile virus: A comprehensive study of neuropathogenesis after infection with chimeric WN/DEN4Δ30 vaccine in comparison to two parental viruses and a surrogate flavivirus reference vaccine

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The upsurge of West Nile virus (WNV) human infections in 2012 suggests that the US can expect periodic WNV outbreaks in the future. Availability of safe and effective vaccines against WNV in endemic areas, particularly for aging populations that are at high risk of West Nile neuroinvasive disease (WNND), could be beneficial. WN/DEN4Δ30 is a live, attenuated chimeric vaccine against WNV produced by replacement of the genes encoding the pre-membrane and envelope protein genes of the vaccine virus against dengue virus type 4 (DEN4Δ30) with corresponding sequences derived from a wild type WNV. Following intrathalamic inoculation of nonhuman primates (NHPs), a comprehensive neuropathogenesis study was performed and neurovirulence of WN/DEN4Δ30 vaccine candidate was compared to that of two parental viruses (i.e., WNV and DEN4Δ30), as well as to that of an attenuated flavivirus surrogate reference (i.e., yellow fever YF 17D). Clinical and virological data, as well as results of a semi-quantitative histopathological analysis, demonstrated that WN/DEN4Δ30 vaccine is highly attenuated for the central nervous system (CNS) of NHPs in comparison to a wild type WNV. Importantly, based on the virus replicative ability in the CNS of NHPs and the degree of induced histopathological changes, the level of neuroattenuation of WN/DEN4Δ30 vaccine was similar to that of YF 17D, and therefore within an acceptable range. In addition, we show that the DEN4Δ30 vaccine tested in this study also has a low neurovirulence profile. In summary, our results demonstrate a high level of neuroattenuation of two vaccine candidates, WN/DEN4Δ30 and DEN4Δ30. We also show here a remarkable sensitivity of our WNV-NY99 NHP model, as well as striking resemblance of the observed neuropathology to that seen in human WNND. These results support the use of this NHP model for translational studies of WNV neuropathogenesis and/or testing the effectiveness of vaccines and therapeutic approaches.

          Related collections

          Author and article information

          Journal
          Vaccine
          Vaccine
          Elsevier BV
          0264410X
          May 2014
          May 2014
          : 32
          : 26
          : 3187-3197
          Article
          10.1016/j.vaccine.2014.04.002
          4100552
          24736001
          85a5c69d-6a1b-4f93-879b-4311e0fd9225
          © 2014

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article