18
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of impaired myocardial relaxation in the production of elevated left ventricular filling pressure.

      American Journal of Physiology - Heart and Circulatory Physiology
      Blood Pressure, physiology, Cardiac Output, Computer Simulation, Humans, Mitral Valve, Models, Cardiovascular, Myocardial Contraction, Stroke Volume, Ventricular Function, Left, Ventricular Pressure

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although present in many patients with heart failure and a normal ejection fraction, the role of isolated impairments in active myocardial relaxation in the genesis of elevated filling pressures is not well characterized. Because of difficulties in determining the effect of prolonged myocardial relaxation in vivo, we used a cardiovascular simulated computer model. The effect of myocardial relaxation, as assessed by tau (exponential time constant of relaxation), on pulmonary vein pressure (PVP) and left ventricular end-diastolic pressure (LVEDP) was investigated over a wide range of tau values (20-100 ms) and heart rate (60-140 beats/min) while keeping end-diastolic volume constant. Cardiac output was recorded over a wide range of tau and heart rate while keeping PVP constant. The effect of systolic intervals was investigated by changing time to end systole at the same heart rate. At a heart rate of 60 beats/min, increases in tau from a baseline to extreme value of 100 ms cause only a minor increase in PVP of 3 mmHg. In contrast, at 120 beats/min, the same increase in tau increases PVP by 23 mmHg. An increase in filling pressures at high heart rates was attributable to incomplete relaxation. The PVP-LVEDP gradient was not constant and increased with increasing tau and heart rate. Prolonged systolic intervals augmented the effects of tau on PVP. Impaired myocardial relaxation is an important determinant of PVP and cardiac output only during rapid heart rate and especially when combined with prolonged systolic intervals. These findings clarify the role of myocardial relaxation in the pathogenesis of elevated filling pressures characteristic of heart failure.

          Related collections

          Author and article information

          Comments

          Comment on this article