7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids

      , , , , ,
      Cogent Food & Agriculture
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: not found
          • Article: not found

          REVIEW: Biofortification of Durum Wheat with Zinc and Iron

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            HarvestPlus: Breeding Crops for Better Nutrition

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation.

              Abu Khan (2004)
              This article reviews recent developments in in situ bioremediation of trace metal contaminated soils, with particular reference to the microbial dynamics in the rhizospheres of plants growing on such soils and their significance in phytoremediation. In non-agricultural conditions, the natural role of plant growth promoting rhizobacteria (PGPR), P-solubilizing bacteria, mycorrhizal-helping bacteria (MHB) and arbuscular mycorrhizal fungi (AMF) in maintaining soil fertility is more important than in conventional agriculture, horticulture, and forestry where higher use of agrochemicals minimize their significance. These microbes initiate a concerted action when a particular population density is achieved, i.e. quorum sensing. AMF also recognize their host by signals released by host roots, allowing a functional symbiosis. AM fungi produce an insoluble glycoprotein, glomalin, which sequester trace elements and it should be considered for biostabilization leading to remediation of contaminated soils. Conclusions drawn from studies of metal uptake kinetics in solution cultures may not be valid for more complex field conditions and use of some combination of glasshouse and field experiments with organisms that occur within the same plant community is suggested. Phytoextraction strategies, such as inoculation of plants to be used for phytoremediation with appropriate heavy metal adapted rhizobial microflora, co-cropping system involving a non-mycorrhizal hyperaccumulator plant and a non-accumulator but mycorrhizal with appropriate AMF, or pre-cropping with mycotrophic crop systems to optimize phytoremediation processes, merit further field level investigations. There is also a need to improve our understanding of the mechanisms involved in transfer and mobilization of trace elements by rhizosphere microbiota and to conduct research on selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. This is necessary if we are to improve the chances of successful phytoremediation.
                Bookmark

                Author and article information

                Journal
                Cogent Food & Agriculture
                Cogent Food & Agriculture
                Informa UK Limited
                2331-1932
                December 31 2015
                January 9 2015
                : 1
                : 1
                Article
                10.1080/23311932.2014.998507
                85c864ce-73ee-4d75-ac49-1210dde57775
                © 2015
                History

                Comments

                Comment on this article