20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rutin and Its Combination With Inulin Attenuate Gut Dysbiosis, the Inflammatory Status and Endoplasmic Reticulum Stress in Paneth Cells of Obese Mice Induced by High-Fat Diet

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gut dysbiosis induced by high fat diet (HF) or obesity is a predisposing factor to develop diverse inflammatory diseases. Polyphenols and fibers, often eaten together, have been reported to have prebiotic actions, but their health promoting benefits still need to be further characterized and defined. This study attempted to understand how polyphenol rutin and polysaccharide inulin influence intestinal health in mouse model fed a HF (60 kcal%) diet. A total of 48 C57BL/6J mice were divided into four groups fed with a low fat (10% kcal%) control diet (LC), a high fat control diet (HC), a high-fat diet supplemented with rutin (HR), or a high-fat diet supplemented rutin and inulin (HRI) for 20 weeks. Rutin supplementation reduced the HF diet-induced increase of Firmicutes/ Bacteroidetes (F/B) ratio, Deferribacteraceae population and plasma lipopolysaccharide (LPS) ( p < 0.05); ameliorated inflammation as indicated by the decreased circulating inflammatory cytokines ( p < 0.05) and the reduced expressions of intestinal inflammatory mediators ( p < 0.05); and attenuated the endoplasmic reticulum (ER) stress in Paneth cells as indicated by the decreased expressions of the ER markers ( p < 0.05). Compared to the rutin supplementation alone, the co-administration of rutin with inulin improved the utilization of rutin as indicated by its decreased excretion, suppressed a number of harmful bacteria including Deferribacteraceae and Desulfovibrionaceae ( p < 0.05), and further reduced the expression of the key inflammatory cytokine TNF-α and increased the production of butyrate, despite the supplementation of inulin reversed the decrease of body weight induced by rutin supplementation due to an increased food intake. Taken together, our data demonstrated that rutin supplementation ameliorated the inflammatory status and ER stress in Paneth cells under a HF-induced obese state, and its co-administration with inulin further mitigated the inflammatory status, indicating the potential to combine polyphenol rutin and the polysaccharide inulin as a dietary strategy to ameliorate gut dysbiosis, to improve inflammatory status and thereby to reduce medical disorders associated with HF-induced obesity.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Interaction between phenolics and gut microbiota: role in human health.

          Dietary phenolic compounds are often transformed before absorption. This transformation modulates their biological activity. Different studies have been carried out to understand gut microbiota transformations of particular polyphenol types and identify the responsible microorganisms. Although there are potentially thousands of different phenolic compounds in the diet, they are typically transformed to a much smaller number of metabolites. The aim of this review was to discuss the current information about the microbial degradation metabolites obtained from different phenolics and their formation pathways, identifying their differences and similarities. The modulation of gut microbial population by phenolics was also reviewed in order to understand the two-way phenolic-microbiota interaction. Clostridium and Eubacterium genera, which are phylogenetically associated, are other common elements involved in the metabolism of many phenolics. The health benefits from phenolic consumption should be attributed to their bioactive metabolites and also to the modulation of the intestinal bacterial population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet–Induced Metabolic Syndrome

            Dietary polyphenols protect against metabolic syndrome, despite limited absorption and digestion, raising questions about their mechanism of action. We hypothesized that one mechanism may involve the gut microbiota. To test this hypothesis, C57BL/6J mice were fed a high-fat diet (HFD) containing 1% Concord grape polyphenols (GP). Relative to vehicle controls, GP attenuated several effects of HFD feeding, including weight gain, adiposity, serum inflammatory markers (tumor necrosis factor [TNF]α, interleukin [IL]-6, and lipopolysaccharide), and glucose intolerance. GP lowered intestinal expression of inflammatory markers (TNFα, IL-6, inducible nitric oxide synthase) and a gene for glucose absorption (Glut2). GP increased intestinal expression of genes involved in barrier function (occludin) and limiting triglyceride storage (fasting-induced adipocyte factor). GP also increased intestinal gene expression of proglucagon, a precursor of proteins that promote insulin production and gut barrier integrity. 16S rRNA gene sequencing and quantitative PCR of cecal and fecal samples demonstrated that GP dramatically increased the growth of Akkermansia muciniphila and decreased the proportion of Firmicutes to Bacteroidetes, consistent with prior reports that similar changes in microbial community structure can protect from diet-induced obesity and metabolic disease. These data suggest that GP act in the intestine to modify gut microbial community structure, resulting in lower intestinal and systemic inflammation and improved metabolic outcomes. The gut microbiota may thus provide the missing link in the mechanism of action of poorly absorbed dietary polyphenols.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice.

              Obesity is a highly heritable disease driven by complex interactions between genetic and environmental factors. Human genome-wide association studies (GWAS) have identified a number of loci contributing to obesity; however, a major limitation of these studies is the inability to assess environmental interactions common to obesity. Using a systems genetics approach, we measured obesity traits, global gene expression, and gut microbiota composition in response to a high-fat/high-sucrose (HF/HS) diet of more than 100 inbred strains of mice. Here we show that HF/HS feeding promotes robust, strain-specific changes in obesity that are not accounted for by food intake and provide evidence for a genetically determined set point for obesity. GWAS analysis identified 11 genome-wide significant loci associated with obesity traits, several of which overlap with loci identified in human studies. We also show strong relationships between genotype and gut microbiota plasticity during HF/HS feeding and identify gut microbial phylotypes associated with obesity. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                05 November 2018
                2018
                : 9
                : 2651
                Affiliations
                [1] 1School of Pharmacy and Biological Engineering, Chengdu University , Chengdu, China
                [2] 2School of Public Health and Health Sciences, University of Massachusetts , Amherst, MA, United States
                [3] 3College of Animal Science and Technology, Sichuan Agricultural University , Chengdu, China
                Author notes

                Edited by: Yuheng Luo, Sichuan Agricultural University, China

                Reviewed by: Qingping Zhong, South China Agricultural University, China; Zhaolai Dai, China Agricultural University, China; Diana Soghomonyan, Yerevan State University, Armenia

                *Correspondence: Xiulan Guo, guoxiulan@ 123456cdu.edu.cn Zhenhua Liu, zliu@ 123456nutrition.umass.edu

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.02651
                6230659
                30455677
                85ec1b2c-5df1-4895-b97a-c79e55dad552
                Copyright © 2018 Guo, Tang, Yang, Lu, Luo and Liu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 August 2018
                : 17 October 2018
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 53, Pages: 11, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                obesity,rutin,inulin,gut dysbiosis,inflammation,paneth cells
                Microbiology & Virology
                obesity, rutin, inulin, gut dysbiosis, inflammation, paneth cells

                Comments

                Comment on this article