23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein Kinase C: One Pathway towards the Eradication of Latent HIV-1 Reservoirs

      review-article
      , , *
      Advances in Virology
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An effective means to eradicate latent reservoirs in HIV-1-infected individuals remains elusive. Attempts to purge these reservoirs were undertaken over a decade ago without success. The subsequent lapse in further clinical attempts since may have been justified as our knowledge of the mechanisms which underpin the latent state still evolves. Although additional novel molecular antagonists of HIV-1 latency have subsequently been reported, these candidate agents have not been tested in human trials for reservoir ablation. This review provides an overview of the protein kinase C (PKC) pathway which can be modulated by small molecular agents to induce the expression of latent HIV-1 from within infected reservoir cells. Some of these agents have been tested against select cancers with seemingly tolerable side effects. As such, modulation of the PKC pathway may yet be a viable mechanism toward HIV-1 reservoir eradication.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy.

          The hypothesis that quiescent CD4+ T lymphocytes carrying proviral DNA provide a reservoir for human immunodeficiency virus-type 1 (HIV-1) in patients on highly active antiretroviral therapy (HAART) was examined. In a study of 22 patients successfully treated with HAART for up to 30 months, replication-competent virus was routinely recovered from resting CD4+ T lymphocytes. The frequency of resting CD4+ T cells harboring latent HIV-1 was low, 0.2 to 16.4 per 10(6) cells, and, in cross-sectional analysis, did not decrease with increasing time on therapy. The recovered viruses generally did not show mutations associated with resistance to the relevant antiretroviral drugs. This reservoir of nonevolving latent virus in resting CD4+ T cells should be considered in deciding whether to terminate treatment in patients who respond to HAART.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIV reproducibly establishes a latent infection after acute infection of T cells in vitro.

            The presence of latent reservoirs has prevented the eradication of human immunodeficiency virus (HIV) from infected patients successfully treated with anti-retroviral therapy. The mechanism of postintegration latency is poorly understood, partly because of the lack of an in vitro model. We have used an HIV retroviral vector or a full-length HIV genome expressing green fluorescent protein to infect a T lymphocyte cell line in vitro and highly enrich for latently infected cells. HIV latency occurred reproducibly, albeit with low frequency, during an acute infection. Clonal cell lines derived from latent populations showed no detectable basal expression, but could be transcriptionally activated after treatment with phorbol esters or tumor necrosis factor alpha. Direct sequencing of integration sites demonstrated that latent clones frequently contain HIV integrated in or close to alphoid repeat elements in heterochromatin. This is in contrast to a productive infection where integration in or near heterochromatin is disfavored. These observations demonstrate that HIV can reproducibly establish a latent infection as a consequence of integration in or near heterochromatin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy.

              Although highly active antiretroviral therapy (HAART) in the form of triple combinations of drugs including protease inhibitors can reduce the plasma viral load of some HIV-1-infected individuals to undetectable levels, it is unclear what the effects of these regimens are on latently infected CD4+ T cells and what role these cells play in the persistence of HIV-1 infection in individuals receiving such treatment. The present study demonstrates that highly purified CD4+ T cells from 13 of 13 patients receiving HAART with an average treatment time of 10 months and with undetectable (<500 copies HIV RNA/ml) plasma viremia by a commonly used bDNA assay carried integrated proviral DNA and were capable of producing infectious virus upon cellular activation in vitro. Phenotypic analysis of HIV-1 produced by activation of latently infected CD4+ T cells revealed the presence in some patients of syncytium-inducing virus. In addition, the presence of unintegrated HIV-1 DNA in infected resting CD4+ T cells from patients receiving HAART, even those with undetectable plasma viremia, suggests persistent active virus replication in vivo.
                Bookmark

                Author and article information

                Journal
                Adv Virol
                AV
                Advances in Virology
                Hindawi Publishing Corporation
                1687-8639
                1687-8647
                2012
                5 March 2012
                : 2012
                : 805347
                Affiliations
                Department of Biology, Chestnut Hill College, Philadelphia, PA 19118, USA
                Author notes
                *Joseph Kulkosky: kulkoskyj@ 123456chc.edu

                Academic Editor: Michael Bukrinsky

                Article
                10.1155/2012/805347
                3303757
                22500169
                86489f5c-fa71-4290-84fc-a2da9defa6e3
                Copyright © 2012 Lisa N. McKernan et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 October 2011
                : 23 December 2011
                Categories
                Review Article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article