7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neutrophils are a vital component of immune protection, yet in cancer they may promote tumour progression, partly by generating reactive oxygen species (ROS) that disrupts lymphocyte functions. Metabolically, neutrophils are often discounted as purely glycolytic. Here we show that immature, c-Kit + neutrophils subsets can engage in oxidative mitochondrial metabolism. With limited glucose supply, oxidative neutrophils use mitochondrial fatty acid oxidation to support NADPH oxidase-dependent ROS production. In 4T1 tumour-bearing mice, mitochondrial fitness is enhanced in splenic neutrophils and is driven by c-Kit signalling. Concordantly, tumour-elicited oxidative neutrophils are able to maintain ROS production and T cell suppression when glucose utilisation is restricted. Consistent with these findings, peripheral blood neutrophils from patients with cancer also display increased immaturity, mitochondrial content and oxidative phosphorylation. Together, our data suggest that the glucose-restricted tumour microenvironment induces metabolically adapted, oxidative neutrophils to maintain local immune suppression.

          Abstract

          Neutrophils normally fulfil their metabolic demands by glycolysis and have limited mitochondrial activity. Here the authors show that tumours promote neutrophils adapted to oxidative mitochondria metabolism that function in the glucose-restrained tumour microenvironment to promote tumour growth by maintaining local immune suppression.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Neutrophils in cancer: neutral no more.

          Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts.

            Mitochondria participate in key metabolic reactions of the cell and regulate crucial signaling pathways including apoptosis. Although several approaches are available to study mitochondrial function in situ are available, investigating functional mitochondria that have been isolated from different tissues and from cultured cells offers still more unmatched advantages. This protocol illustrates a step-by-step procedure to obtain functional mitochondria with high yield from cells grown in culture, liver and muscle. The isolation procedures described here require 1-2 hours, depending on the source of the organelles. The polarographic analysis can be completed in 1 hour.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients.

              Impaired T-cell function in patients with advanced cancer has been a widely acknowledged finding, but mechanisms reported thus far are those primarily operating in the tumor microenvironment. Very few mechanisms have been put forth to explain several well-described defects in peripheral blood T cells, such as reduction in expression of signaling molecules, decreased production of cytokines, or increased apoptosis. We have closely examined the peripheral blood mononuclear cell (PBMC) samples derived from patients and healthy individuals, and we have observed an important difference that may underlie the majority of reported defects. We observed that in samples from patients only, an unusually large number of granulocytes copurify with low density PBMCs on a density gradient rather than sediment, as expected, to the bottom of the gradient. We also show that activating granulocytes from a healthy donor with N-formyl-L-methionyl-L-leucyl-L-phenylalanine could also cause them to sediment aberrantly and copurify with PBMCs, suggesting that density change is a marker of their activation. To confirm this, we looked for other evidence of in vivo granulocyte activation and found it in drastically elevated plasma levels of 8-isoprostane, a product of lipid peroxidation and a marker of oxidative stress. Reduced T-cell receptor zeta chain expression and decreased cytokine production by patients' T cells correlated with the presence of activated granulocytes in their PBMCs. We showed that freshly obtained granulocytes from healthy donors, if activated, can also inhibit cytokine production by T cells. This action is abrogated by the addition of the hydrogen peroxide (H(2)O(2)) scavenger, catalase, implicating H(2)O(2) as the effector molecule. Indeed, when added alone, H(2)O(2) could suppress cytokine production of normal T cells. These findings indicate that granulocytes are activated in advanced cancer patients and that granulocyte-derived H(2)O(2) is the major cause of severe systemic T-cell suppression.
                Bookmark

                Author and article information

                Contributors
                chris28rice@gmail.com
                mcvicard@mail.nih.gov
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                30 November 2018
                30 November 2018
                2018
                : 9
                : 5099
                Affiliations
                [1 ]ISNI 0000 0004 1936 8075, GRID grid.48336.3a, Cancer & Inflammation Program, , National Cancer Institute, ; Frederick, MD 21702 USA
                [2 ]ISNI 0000 0001 0807 5670, GRID grid.5600.3, Division of Infection & Immunity, School of Medicine, , Cardiff University, ; Tenovus Building, Heath Park, Cardiff, CF14 4XN UK
                [3 ]ISNI 0000 0001 2297 5165, GRID grid.94365.3d, Molecular Medicine Branch, National Institute of Child Health and Human Development, , National Institute of Health, ; Bethesda, MD 20892 USA
                [4 ]ISNI 0000 0004 1936 8075, GRID grid.48336.3a, Women’s Malignancies Branch, Center for Cancer Research, , National Cancer Institute, ; Bethesda, MD 20892 USA
                Article
                7505
                10.1038/s41467-018-07505-2
                6269473
                30504842
                865b3148-6720-49e9-ae41-0da806e2f285
                © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 November 2017
                : 28 October 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article