9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cyclic on-chip bacteria separation and preconcentration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanoparticles and biological molecules high throughput robust separation is of significant interest in many healthcare and nanoscience industrial applications. In this work, we report an on-chip automatic efficient separation and preconcentration method of dissimilar sized particles within a microfluidic platform using integrated membrane valves controlled microfiltration. Micro-sized E. coli bacteria are sorted from nanoparticles and preconcentrated on a microfluidic chip with six integrated pneumatic valves (sub-100 nL dead volume) using hydrophilic PVDF filter with 0.45 μm pore diameter. The proposed on-chip automatic sorting sequence includes a sample filtration, dead volume washout and retentate backflush in reverse flow. We showed that pulse backflush mode and volume control can dramatically increase microparticles sorting and preconcentration efficiency. We demonstrate that at the optimal pulse backflush regime a separation efficiency of E. coli cells up to 81.33% at a separation throughput of 120.45 μL/min can be achieved. A trimmed mode when the backflush volume is twice smaller than the initial sample results in a preconcentration efficiency of E. coli cells up to 121.96% at a throughput of 80.93 μL/min. Finally, we propose a cyclic on-chip preconcentration method which demonstrates E. coli cells preconcentration efficiency of 536% at a throughput of 1.98 μL/min and 294% preconcentration efficiency at a 10.9 μL/min throughput.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Label-free cell separation and sorting in microfluidic systems

          Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible. Figure A wide range of microfluidic technologies have been developed to separate and sort cells by taking advantage of differences in their intrinsic biophysical properties
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fundamentals and applications of inertial microfluidics: a review.

            In the last decade, inertial microfluidics has attracted significant attention and a wide variety of channel designs that focus, concentrate and separate particles and fluids have been demonstrated. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within the Stokes flow region with very low Reynolds number (Re ≪ 1), inertial microfluidics works in the intermediate Reynolds number range (~1 < Re < ~100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite and bring about several intriguing effects that form the basis of inertial microfluidics including (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low cost, inertial microfluidics is a very promising candidate for cellular sample processing, especially for samples with low abundant targets. In this review, we first discuss the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems. We then present a comprehensive review of recent developments and key applications of inertial microfluidic systems according to their microchannel structures. Finally, we discuss the perspective of employing fluid inertia in microfluidics for particle manipulation. Due to the superior benefits of inertial microfluidics, this promising technology will still be an attractive topic in the near future, with more novel designs and further applications in biology, medicine and industry on the horizon.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gold nanoparticle-enabled biological and chemical detection and analysis.

              Gold nanoparticles (AuNPs) are some of the most extensively studied nanomaterials. Because of their unique optical, chemical, electrical, and catalytic properties, AuNPs have attracted enormous amount of interest for applications in biological and chemical detection and analysis. The purpose of this critical review is to provide the readers with an update on the recent developments in the field of AuNPs for sensing applications based on their optical properties. An overview of the optical properties of AuNPs is presented first, followed by a more detailed literature survey. As the last part of this review, we compare the advantages and disadvantages of each technique, briefly discuss their commercialization status, and some technical issues that remain to be solved in order to move the technique forward (151 references).
                Bookmark

                Author and article information

                Contributors
                irodionov@bmstu.ru
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                3 December 2020
                3 December 2020
                2020
                : 10
                : 21107
                Affiliations
                [1 ]GRID grid.61569.3d, ISNI 0000 0001 0405 5955, FMN Laboratory, , Bauman Moscow State Technical University, ; Moscow, Russia 105005
                [2 ]Dukhov Research Institute of Automatics, Moscow, Russia 127055
                [3 ]GRID grid.473298.3, Institute for Theoretical and Applied Electromagnetics of Russian Academy of Sciences, ; Moscow, Russia 125412
                [4 ]GRID grid.14476.30, ISNI 0000 0001 2342 9668, Faculty of Chemistry, , M.V. Lomonosov Moscow State University, ; Moscow, Russia 119234
                [5 ]GRID grid.4886.2, ISNI 0000 0001 2192 9124, N.M. Emanuel Institute of Biochemical Physics, , Russian Academy of Sciences, ; Moscow, Russia 119334
                Article
                78298
                10.1038/s41598-020-78298-y
                7713219
                33273691
                868a67bf-ae75-4773-a54b-01ae903ad708
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 September 2020
                : 24 November 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                lab-on-a-chip,engineering
                Uncategorized
                lab-on-a-chip, engineering

                Comments

                Comment on this article