1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Electrophysiologic substrate and intraventricular left ventricular dyssynchrony in nonischemic heart failure patients undergoing cardiac resynchronization therapy.

      Heart Rhythm
      Adolescent, Adult, Aged, Body Surface Potential Mapping, Cardiac Resynchronization Therapy, Child, Electrophysiologic Techniques, Cardiac, Female, Heart Failure, physiopathology, therapy, Humans, Male, Middle Aged

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electrocardiographic imaging (ECGI) is a method for noninvasive epicardial electrophysiologic mapping. ECGI previously has been used to characterize the electrophysiologic substrate and electrical synchrony in a very heterogeneous group of patients with varying degrees of coronary disease and ischemic cardiomyopathy. The purpose of this study was to characterize the left ventricular electrophysiologic substrate and electrical dyssynchrony using ECGI in a homogeneous group of nonischemic cardiomyopathy patients who were previously implanted with a cardiac resynchronization therapy (CRT) device. ECGI was performed during different rhythms in 25 patients by programming their devices to biventricular pacing, single-chamber (left ventricular or right ventricular) pacing, and native rhythm. The electrical dyssynchrony index (ED) was computed as the standard deviation of activation times at 500 sites on the LV epicardium. In all patients, native rhythm activation was characterized by lines of conduction block in a region with steep activation-recovery interval (ARI) gradients between the epicardial aspect of the septum and LV lateral wall. A native QRS duration (QRSd) >130 ms was associated with high ED (≥30 ms), whereas QRSd <130 ms was associated with minimal (25 ms) to large (40 ms) ED. CRT responders had very high dyssynchrony (ED = 35.5 ± 3.9 ms) in native rhythm, which was significantly lowered (ED = 23.2 ± 4.4 ms) during CRT. All four nonresponders in the study did not show significant difference in ED between native and CRT rhythms. The electrophysiologic substrate in nonischemic cardiomyopathy is consistent among all patients, with steep ARI gradients co-localizing with conduction block lines between the epicardial aspect of the septum and the LV lateral wall. QRSd wider than 130 ms is indicative of substantial LV electrical dyssynchrony; however, among patients with QRSd <130 ms, LV dyssynchrony may vary widely. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article