11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variability in the Composition of Pacific Oyster Microbiomes Across Oyster Families Exhibiting Different Levels of Susceptibility to OsHV-1 μvar Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oyster diseases are a major impediment to the profitability and growth of the oyster aquaculture industry. In recent years, geographically widespread outbreaks of disease caused by ostreid herpesvirus-1 microvariant (OsHV-1 μvar) have led to mass mortalities among Crassostrea gigas, the Pacific Oyster. Attempts to minimize the impact of this disease have been largely focused on breeding programs, and although these have shown some success in producing oyster families with reduced mortality, the mechanism(s) behind this protection is poorly understood. One possible factor is modification of the C. gigas microbiome. To explore how breeding for resistance to OsHV-1 μvar affects the oyster microbiome, we used 16S rRNA amplicon sequencing to characterize the bacterial communities associated with 35 C. gigas families, incorporating oysters with different levels of susceptibility to OsHV-1 μvar disease. The microbiomes of disease-susceptible families were significantly different to the microbiomes of disease-resistant families. OTUs assigned to the Photobacterium, Vibrio, Aliivibrio, Streptococcus, and Roseovarius genera were associated with low disease resistance. In partial support of this finding, qPCR identified a statistically significant increase of Vibrio-specific 16S rRNA gene copies in the low disease resistance families, possibly indicative of a reduced host immune response to these pathogens. In addition to these results, examination of the core microbiome revealed that each family possessed a small core community, with OTUs assigned to the Winogradskyella genus and the Bradyrhizobiaceae family consistent members across most disease-resistant families. This study examines patterns in the microbiome of oyster families exhibiting differing levels of OsHV-1 μvar disease resistance and reveals some key bacterial taxa that may provide a protective or detrimental role in OsHV-1 μvar disease outbreaks.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The gut microbiome in health and in disease

            Recent technological advancements and expanded efforts have led to a tremendous growth in the collective knowledge of the human microbiome. This review will highlight some of the important recent findings in this area of research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling.

              The symbiotic microbiota profoundly affect many aspects of host physiology; however, the molecular mechanisms underlying host-microbe cross-talk are largely unknown. Here, we show that the pyrroloquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) activity of a commensal bacterium, Acetobacter pomorum, modulates insulin/insulin-like growth factor signaling (IIS) in Drosophila to regulate host homeostatic programs controlling developmental rate, body size, energy metabolism, and intestinal stem cell activity. Germ-free animals monoassociated with PQQ-ADH mutant bacteria displayed severe deregulation of developmental and metabolic homeostasis. Importantly, these defects were reversed by enhancing host IIS or by supplementing the diet with acetic acid, the metabolic product of PQQ-ADH.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                11 March 2019
                2019
                : 10
                : 473
                Affiliations
                [1] 1The School of Life Sciences, University of Technology Sydney , Ultimo, NSW, Australia
                [2] 2Climate Change Cluster, University of Technology Sydney , Ultimo, NSW, Australia
                [3] 3NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute , Menangle, NSW, Australia
                [4] 4NSW Department of Primary Industries, Port Stephens Fisheries Institute , Port Stephens, NSW, Australia
                Author notes

                Edited by: Sebastian Fraune, University of Kiel, Germany

                Reviewed by: Mathias Wegner, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Germany; Eve Toulza, Université de Perpignan Via Domitia, France

                *Correspondence: Maurizio Labbate, maurizio.labbate@ 123456uts.edu.au

                This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.00473
                6421512
                30915058
                87553d14-836d-4440-a0e9-3e8292080462
                Copyright © 2019 King, Siboni, Williams, Kahlke, Nguyen, Jenkins, Dove, O’Connor, Seymour and Labbate.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 November 2018
                : 22 February 2019
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 78, Pages: 12, Words: 0
                Funding
                Funded by: Cooperative Research Centres, Australian Government Department of Industry 10.13039/501100003327
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                crassostrea gigas,microbiome,ostreid herpesvirus,disease resistance,vibrio,poms

                Comments

                Comment on this article