3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adaptive IDS for Cooperative Intelligent Transportation Systems Using Deep Belief Networks

        , ,
      Algorithms
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The adoption of cooperative intelligent transportation systems (cITSs) improves road safety and traffic efficiency. Vehicles connected to cITS form vehicular ad hoc networks (VANET) to exchange messages. Like other networks and systems, cITSs are targeted by attackers intent on compromising and disrupting system integrity and availability. They can repeatedly spoof false information causing bottlenecks, traffic jams and even road accidents. The existing security infrastructure assumes that the network topology and/or attack behavior is static. However, the cITS is inherently dynamic in nature. Moreover, attackers may have the ability and resources to change their behavior continuously. Assuming a static IDS security model for VANETs is not suitable and can lead to low detection accuracy and high false alarms. Therefore, this paper proposes an adaptive security solution based on deep learning and contextual references that can cope with the dynamic nature of the cITS topologies and increasingly common attack behaviors. In this study, deep belief networks (DBN) modeling was used to train the detection model. Binary cross entropy was used as a loss function to measure the prediction error. Two activation functions were used, Relu and Softmax, for input–output mapping. The Relu was used in the hidden layers, while the Sigmoid was used in the last layer to map the real vector to output between 0 and 1. The adaptation mechanism was incorporated into the detection model using a moving average that monitors predicted values within a time window. In this way, the model can readjust the classification thresholds on-the-fly as appropriate. The proposed model was evaluated using the Next Generation Simulation (NGSIM) dataset, which is commonly used in such related works. The result is improved accuracy, demonstrating that the adaptation mechanism used in this study was effective.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          Anomaly Detection for IoT Time-Series Data: A Survey

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Survey on Misbehavior Detection in Cooperative Intelligent Transportation Systems

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Misbehavior-Aware On-Demand Collaborative Intrusion Detection System Using Distributed Ensemble Learning for VANET

              Vehicular ad hoc networks (VANETs) play an important role as enabling technology for future cooperative intelligent transportation systems (CITSs). Vehicles in VANETs share real-time information about their movement state, traffic situation, and road conditions. However, VANETs are susceptible to the cyberattacks that create life threatening situations and/or cause road congestion. Intrusion detection systems (IDSs) that rely on the cooperation between vehicles to detect intruders, were the most suggested security solutions for VANET. Unfortunately, existing cooperative IDSs (CIDSs) are vulnerable to the legitimate yet compromised collaborators that share misleading and manipulated information and disrupt the IDSs’ normal operation. As such, this paper proposes a misbehavior-aware on-demand collaborative intrusion detection system (MA-CIDS) based on the concept of distributed ensemble learning. That is, vehicles individually use the random forest algorithm to train local IDS classifiers and share their locally trained classifiers on-demand with the vehicles in their vicinity, which reduces the communication overhead. Once received, the performance of the classifiers is evaluated using the local testing dataset in the receiving vehicle. The evaluation values are used as a trustworthiness factor and used to rank the received classifiers. The classifiers that deviate much from the box-and-whisker plot lower boundary are excluded from the set of the collaborators. Then, each vehicle constructs an ensemble of weighted random forest-based classifiers that encompasses the locally and remotely trained classifiers. The outputs of the classifiers are aggregated using a robust weighted voting scheme. Extensive simulations were conducted utilizing the network security laboratory-knowledge discovery data mining (NSL-KDD) dataset to evaluate the performance of the proposed MA-CIDS model. The obtained results show that MA-CIDS performs better than the other existing models in terms of effectiveness and efficiency for VANET.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ALGOCH
                Algorithms
                Algorithms
                MDPI AG
                1999-4893
                July 2022
                July 20 2022
                : 15
                : 7
                : 251
                Article
                10.3390/a15070251
                8774d0a0-000d-4221-81fc-6c45b4f2f1e6
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article