21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Limbic system associated membrane protein as a potential target for neuropsychiatric disorders

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The studies performed in laboratory animals and psychiatric patients suggest a possible role of limbic system-associated membrane protein (LAMP) in the mechanisms of psychiatric disorders. Stressful manipulations and genetic invalidation have revealed a role of the Lsamp gene in the regulation of anxiety in rodents. Besides that, Lsamp-deficient mice display reduced aggressiveness and impaired adaptation in novel and stressful environments. The behavioral effects of amphetamine were blunted in genetically modified mice. Recent pharmacological and biochemical studies point toward altered function of GABA-, 5-hydroxytryptamine-, and dopaminergic systems in Lsamp-deficient mice. Moreover, we found an association between the gene polymorphisms of LSAMP and major depressive disorder (MDD). Patients suffering from MDD had significantly increased ratio between risk and protective haplotypes of the LSAMP gene compared to healthy volunteers. However, the impact of these haplotypes for the function of LAMP is not clear and remains to be elucidated in future studies.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression.

          The dorsolateral prefrontal cortex (dlpfc) is strongly implicated in the pathogenesis of schizophrenia (SCZ) and bipolar disorder (BPD) and, within this region, abnormalities in glutamatergic neurotransmission and synaptic function have been described. Proteins associated with these functions are enriched in membrane microdomains (MM). In the current study, we used two complementary proteomic methods, two-dimensional difference gel electrophoresis and one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis followed by reverse phase-liquid chromatography-tandem mass spectrometry (RP-LC-MS/MS) (gel separation liquid chromatography-tandem mass spectrometry (GeLC-MS/MS)) to assess protein expression in MM in pooled samples of dlpfc from SCZ, BPD and control cases (n=10 per group) from the Stanley Foundation Brain series. We identified 16 proteins altered in one/both disorders using proteomic methods. We selected three proteins with roles in synaptic function (syntaxin-binding protein 1 (STXBP1), brain abundant membrane-attached signal protein 1 (BASP1) and limbic system-associated membrane protein (LAMP)) for validation by western blotting. This revealed significantly increased expression of these proteins in SCZ (STXBP1 (24% difference; P<0.001), BASP1 (40% difference; P<0.05) and LAMP (22% difference; P<0.01)) and BPD (STXBP1 (31% difference; P<0.001), BASP1 (23% difference; P<0.01) and LAMP (20% difference; P<0.01)) in the Stanley brain series (n=20 per group). Further validation in dlpfc from the Harvard brain subseries (n=10 per group) confirmed increased protein expression in SCZ of STXBP1 (18% difference; P<0.0001), BASP1 (14% difference; P<0.0001) but not LAMP (20% difference; P=0.14). No significant differences in STXBP1, BASP1 or LAMP protein expression in BPD dlpfc were observed. This study, through proteomic assessments of MM in dlpfc and validation in two brain series, strongly implicates LAMP, STXBP1 and BASP1 in SCZ and supports the view of a neuritic and synaptic dysfunction in the neuropathology of SCZ.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization.

            Osteosarcomas are the most common primary malignant tumor of bone, and almost all conventional osteosarcomas are high-grade tumors with complex karyotypes. We have examined DNA copy number changes in 36 osteosarcoma tumors and 20 cell lines using microarray-based comparative genomic hybridization. The most frequent minimal recurrent regions of gain identified in the tumor samples were in 1q21.2-q21.3 (78% of the samples), 1q21.3-q22 (78%), and 8q22.1 (72%). Minimal recurrent regions in 10q22.1-q22.2 (81%), 6q16.1 (67%), 13q14.2 (67%), and 13q21.1 (67%) were most frequently lost. A small region in 3q13.31 (2.1 Mb) containing the gene limbic system-associated membrane protein (LSAMP) was frequently deleted (56%). LSAMP has previously been reported to be a candidate tumor suppressor gene in other cancer types. The deletion was validated using fluorescence in situ hybridization, and the expression level and promoter methylation status of LSAMP were investigated using quantitative real-time reverse transcription PCR and methylation-specific PCR, respectively. LSAMP showed low expression compared to two normal bone samples in 6/15 tumors and 5/9 cell lines with deletion of 3q13.31, and also in 5/14 tumors and 3/11 cell lines with normal copy number or gain. Partial or full methylation of the investigated CpG island was identified in 3/30 tumors and 7/20 cell lines. Statistical analyses revealed that loss of 11p15.4-p15.3 and low expression of LSAMP (both P = 0.011) were significantly associated with poor survival. Our results show that LSAMP is a novel candidate tumor suppressor gene in osteosarcomas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The limbic system-associated membrane protein is an Ig superfamily member that mediates selective neuronal growth and axon targeting.

              The formation of brain circuits requires molecular recognition between functionally related neurons. We report the cloning of a molecule that participates in these interactions. The limbic system-associated membrane protein (LAMP) is an immunoglobulin (Ig) superfamily member with 3 Ig domains and a glycosyl-phosphatidylinositol anchor. In the developing forebrain, lamp is expressed mostly by neurons comprising limbic-associated cortical and subcortical regions that function in cognition, emotion, memory, and learning. The unique distribution of LAMP reflects its functional specificity. LAMP-transfected cells selectively facilitate neurite outgrowth of primary limbic neurons. Most striking, administration of anti-LAMP in vivo results in abnormal growth of the mossy fiber projection from developing granule neurons in the dentate gyrus of the hippocampal formation, suggesting that LAMP is essential for proper targeting of this pathway. Rather than being a general guidance cue, LAMP likely serves as a recognition molecule for the formation of limbic connections.
                Bookmark

                Author and article information

                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                26 March 2013
                2013
                : 4
                : 32
                Affiliations
                [1] 1Department of Physiology, University of Tartu Tartu, Estonia
                [2] 2Estonian Academy of Sciences Tallinn, Estonia
                Author notes

                Edited by: Michel Bourin, University of Nantes, France

                Reviewed by: Michel Bourin, University of Nantes, France; Martine Hascoet, University of Nantes, France

                *Correspondence: Eero Vasar, Department of Physiology, University of Tartu, Biomedicum, 19 Ravila Street, 50411 Tartu, Estonia. e-mail: eero.vasar@ 123456ut.ee

                This article was submitted to Frontiers in Neuropharmacology, a specialty of Frontiers in Pharmacology.

                Article
                10.3389/fphar.2013.00032
                3607788
                23532449
                87d81b60-fc7b-4aa6-b0be-cf61103455f7
                Copyright © Innos, Koido, Philips and Vasar.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 23 December 2012
                : 08 March 2013
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 25, Pages: 3, Words: 0
                Categories
                Neuropharmacology
                Review Article

                Pharmacology & Pharmaceutical medicine
                limbic system-associated membrane protein,dopamine,5-hydroxytryptamine,anxiety,genetic polymorphisms,major depressive disorder,panic disorder

                Comments

                Comment on this article