15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fuchs Endothelial Corneal Dystrophy: Strong Association with rs613872 Not Paralleled by Changes in Corneal Endothelial TCF4 mRNA Level

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fuchs endothelial corneal dystrophy (FECD) is a common corneal endotheliopathy with a complex and heterogeneous genetic background. Different variants in the TCF4 gene have been strongly associated with the development of FECD. TCF4 encodes the E2-2 transcription factor but the link between the strong susceptibility locus and disease mechanism remains elusive. Here, we confirm a strong positive association between TCF4 single nucleotide polymorphism rs613872 and FECD in Polish patients (OR = 12.95, 95% CI: 8.63–19.42, χ 2 = 189.5, p < 0.0001). We show that TCF4 expression at the mRNA level in corneal endothelium ( n = 63) does not differ significantly between individuals with a particular TCF4 genotype. It is also not altered in FECD patients as compared to control samples. The data suggest that changes in the transcript level containing constitutive TCF4 exon encoding the amino-terminal part of the protein seem not to contribute to disease pathogenesis. However, considering the strong association of TCF4 allelic variants with FECD, genotyping of TCF4 risk alleles may be important in the clinical practice.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Corneal dystrophies

          The term corneal dystrophy embraces a heterogenous group of bilateral genetically determined non-inflammatory corneal diseases that are restricted to the cornea. The designation is imprecise but remains in vogue because of its clinical value. Clinically, the corneal dystrophies can be divided into three groups based on the sole or predominant anatomical location of the abnormalities. Some affect primarily the corneal epithelium and its basement membrane or Bowman layer and the superficial corneal stroma (anterior corneal dystrophies), the corneal stroma (stromal corneal dystrophies), or Descemet membrane and the corneal endothelium (posterior corneal dystrophies). Most corneal dystrophies have no systemic manifestations and present with variable shaped corneal opacities in a clear or cloudy cornea and they affect visual acuity to different degrees. Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or X-linked recessive Mendelian mode of inheritance. Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Knowledge about the responsible genetic mutations responsible for these disorders has led to a better understanding of their basic defect and to molecular tests for their precise diagnosis. Genes for other corneal dystrophies have been mapped to specific chromosomal loci, but have not yet been identified. As clinical manifestations widely vary with the different entities, corneal dystrophies should be suspected when corneal transparency is lost or corneal opacities occur spontaneously, particularly in both corneas, and especially in the presence of a positive family history or in the offspring of consanguineous parents. Main differential diagnoses include various causes of monoclonal gammopathy, lecithin-cholesterol-acyltransferase deficiency, Fabry disease, cystinosis, tyrosine transaminase deficiency, systemic lysosomal storage diseases (mucopolysaccharidoses, lipidoses, mucolipidoses), and several skin diseases (X-linked ichthyosis, keratosis follicularis spinolosa decalvans). The management of the corneal dystrophies varies with the specific disease. Some are treated medically or with methods that excise or ablate the abnormal corneal tissue, such as deep lamellar endothelial keratoplasty (DLEK) and phototherapeutic keratectomy (PTK). Other less debilitating or asymptomatic dystrophies do not warrant treatment. The prognosis varies from minimal effect on the vision to corneal blindness, with marked phenotypic variability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            E2-2 protein and Fuchs's corneal dystrophy.

            Fuchs's corneal dystrophy (FCD) is a leading cause of corneal transplantation and affects 5% of persons in the United States who are over the age of 40 years. Clinically visible deposits called guttae develop under the corneal endothelium in patients with FCD. A loss of endothelial cells and deposition of an abnormal extracellular matrix are observed microscopically. In advanced disease, the cornea swells and becomes cloudy because the remaining endothelial cells are not sufficient to keep the cornea dehydrated and clear. Although rare genetic variation that contributes to both early-onset and typical late-onset forms of FCD has been identified, to our knowledge, no common variants have been reported. We performed a genomewide association study and replicated the most significant observations in a second, independent group of subjects. Alleles in the transcription factor 4 gene (TCF4), encoding a member of the E-protein family (E2-2), were associated with typical FCD (P=2.3x10(-26)). The association increased the odds of having FCD by a factor of 30 for persons with two copies of the disease variants (homozygotes) and discriminated between case subjects and control subjects with about 76% accuracy. At least two regions of the TCF4 locus were associated independently with FCD. Alleles in the gene encoding protein tyrosine phosphatase receptor type G (PTPRG) were associated with FCD (P=4.0x10(-7)), but the association did not reach genomewide significance. Genetic variation in TCF4 contributes to the development of FCD. (Funded by the National Eye Institute and others.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Common Trinucleotide Repeat Expansion within the Transcription Factor 4 (TCF4, E2-2) Gene Predicts Fuchs Corneal Dystrophy

              Fuchs endothelial corneal dystrophy (FECD) is a common, familial disease of the corneal endothelium and is the leading indication for corneal transplantation. Variation in the transcription factor 4 (TCF4) gene has been identified as a major contributor to the disease. We tested for an association between an intronic TGC trinucleotide repeat in TCF4 and FECD by determining repeat length in 66 affected participants with severe FECD and 63 participants with normal corneas in a 3-stage discovery/replication/validation study. PCR primers flanking the TGC repeat were used to amplify leukocyte-derived genomic DNA. Repeat length was determined by direct sequencing, short tandem repeat (STR) assay and Southern blotting. Genomic Southern blots were used to evaluate samples for which only a single allele was identified by STR analysis. Compiling data for 3 arms of the study, a TGC repeat length >50 was present in 79% of FECD cases and in 3% of normal controls cases (p 50 TGC repeats, 13 (20%) had 50 repeats, 60 (95%) had 50 TGC repeats identifying FECD in this patient cohort was 79% and 96%, respectively Expanded TGC repeat was more specific for FECD cases than the previously identified, highly associated, single nucleotide polymorphism, rs613872 (specificity = 79%). The TGC trinucleotide repeat expansion in TCF4 is strongly associated with FECD, and a repeat length >50 is highly specific for the disease This association suggests that trinucleotide expansion may play a pathogenic role in the majority of FECD cases and is a predictor of disease risk.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                16 September 2015
                : 2015
                : 640234
                Affiliations
                1Department of Genetics, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
                2Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
                3Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
                4Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
                5Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
                Author notes

                Academic Editor: Alessandro Lambiase

                Article
                10.1155/2015/640234
                4588027
                26451375
                883f6a5b-e184-412e-b387-f0939f226eec
                Copyright © 2015 Monika Ołdak et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 March 2015
                : 5 June 2015
                : 8 June 2015
                Categories
                Research Article

                Comments

                Comment on this article