11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physico-Chemical Evaluation of Rationally Designed Melanins as Novel Nature-Inspired Radioprotectors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Melanin, a high-molecular weight pigment that is ubiquitous in nature, protects melanized microorganisms against high doses of ionizing radiation. However, the physics of melanin interaction with ionizing radiation is unknown.

          Methodology/Principal Findings

          We rationally designed melanins from either 5-S-cysteinyl-DOPA, L-cysteine/L-DOPA, or L-DOPA with diverse structures as shown by elemental analysis and HPLC. Sulfur-containing melanins had higher predicted attenuation coefficients than non-sulfur-containing melanins. All synthetic melanins displayed strong electron paramagnetic resonance (2.14·10 18, 7.09·10 18, and 9.05·10 17 spins/g, respectively), with sulfur-containing melanins demonstrating more complex spectra and higher numbers of stable free radicals. There was no change in the quality or quantity of the stable free radicals after high-dose (30,000 cGy), high-energy ( 137Cs, 661.6 keV) irradiation, indicating a high degree of radical stability as well as a robust resistance to the ionizing effects of gamma irradiation. The rationally designed melanins protected mammalian cells against ionizing radiation of different energies.

          Conclusions/Significance

          We propose that due to melanin's numerous aromatic oligomers containing multiple π-electron system, a generated Compton recoil electron gradually loses energy while passing through the pigment, until its energy is sufficiently low that it can be trapped by stable free radicals present in the pigment. Controlled dissipation of high-energy recoil electrons by melanin prevents secondary ionizations and the generation of damaging free radical species.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          The contribution of melanin to microbial pathogenesis.

          Melanins are enigmatic pigments that are produced by a wide variety of microorganisms including several species of pathogenic bacteria, fungi and helminths. The study of melanin is difficult because these pigments defy complete biochemical and structural analysis. Nevertheless, the availability of new reagents in the form of monoclonal antibodies and melanin-binding peptides, combined with the application of various physical techniques, has provided insights into the process of melanization. Melanization is important in microbial pathogenesis because it has been associated with virulence in many microorganisms. Melanin appears to contribute to virulence by reducing the susceptibility of melanized microbes to host defence mechanisms. However, the interaction of melanized microbes and the host is complex and includes immune responses to melanin-related antigens. Production of melanin has also been linked to protection against environmental insults. Interference with melanization is a potential strategy for antimicrobial drug and pesticide development. The process of melanization poses fascinating problems in cell biology and provides a type of pathogenic strategy that is common to highly diverse pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages.

            Cryptococcus neoformans (Cn) is a soil fungus that causes life-threatening meningitis in immunocompromised patients and is a facultative intracellular pathogen capable of replication inside macrophages. The mechanism by which environmental fungi acquire and maintain virulence for mammalian hosts is unknown. We hypothesized that the survival strategies for Cn after ingestion by macrophages and amoebae were similar. Microscopy, fungal and amoebae killing assays, and phagocytosis assays revealed that Cn is phagocytosed by and replicates in Acanthamoeba castellanii, which leads to death of amoebae. An acapsular strain of Cn did not survive when incubated with amoebae, but melanization protected these cells against killing by amoebae. A phospholipase mutant had a decreased replication rate in amoebae compared with isogenic strains. These observations suggest that cryptococcal characteristics that contribute to mammalian virulence also promote fungal survival in amoebae. Intracellular replication was accompanied by the accumulation of polysaccharide containing vesicles similar to those described in Cn-infected macrophages. The results suggest that the virulence of Cn for mammalian cells is a consequence of adaptations that have evolved for protection against environmental predators such as amoebae and provide an explanation for the broad host range of this pathogenic fungus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AAPM protocol for 40-300 kV x-ray beam dosimetry in radiotherapy and radiobiology.

              The American Association of Physicists in Medicine (AAPM) presents a new protocol, developed by the Radiation Therapy Committee Task Group 61, for reference dosimetry of low- and medium-energy x rays for radiotherapy and radiobiology (40 kV or = 100 kV (the "in-phantom" method). The in-phantom method is not recommended for tube potentials < 100 kV. Guidelines are provided to determine the dose at other points in water and the dose at the surface of other biological materials of interest. The protocol is based on an up-to-date data set of basic dosimetry parameters, which produce consistent dose values for the two methods recommended. Estimates of uncertainties on the final dose values are also presented.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                30 September 2009
                : 4
                : 9
                : e7229
                Affiliations
                [1 ]Department of Nuclear Medicine, Albert Einstein College of Medicine, New York, New York, United States of America
                [2 ]Howard Hughes Medical Institute, Medical Fellows Program, Chevy Chase, Maryland, United States of America
                [3 ]The Mount Sinai School of Medicine, New York, New York, United States of America
                [4 ]Department of Physiology and Biophysics, Albert Einstein College of Medicine, New York, New York, United States of America
                [5 ]Department of Radiation Oncology, Albert Einstein College of Medicine, New York, New York, United States of America
                [6 ]Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, United States of America
                [7 ]Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
                [8 ]Department of Medicine, Albert Einstein College of Medicine, New York, New York, United States of America
                Hebrew University of Jerusalem, Israel and University of California at Berkeley, United States of America
                Author notes

                Conceived and designed the experiments: AS ZJ RAB GG DM AC ED. Performed the experiments: AS RCH ZJ RAB GG CCC SC. Analyzed the data: AS RCH ZJ RAB GG CCC DM SC AC ED. Contributed reagents/materials/analysis tools: GG CCC DM SC. Wrote the paper: AS AC ED.

                Article
                09-PONE-RA-10701
                10.1371/journal.pone.0007229
                2749938
                19789711
                88799e28-8b68-4c4b-96a5-9a9cb2fd05ea
                Schweitzer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 May 2009
                : 22 August 2009
                Page count
                Pages: 8
                Categories
                Research Article
                Biophysics/Experimental Biophysical Methods
                Chemistry/Biochemistry
                Physics/Interdisciplinary Physics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article