7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dephosphorylation-induced interactions of neurofilaments with microtubules.

      The Journal of Biological Chemistry
      Animals, Brain Chemistry, Cattle, In Vitro Techniques, Intermediate Filaments, metabolism, ultrastructure, Microscopy, Electron, Microtubules, Phosphoproteins, Phosphorylation, Structure-Activity Relationship, Ultracentrifugation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Effects of dephosphorylation on interactions of neurofilaments (NFs) with microtubules (MTs) were studied by the cosedimentation method. Centrifugation conditions were chosen so that MTs pelleted but NFs did not. While NFs isolated from bovine spinal cords did not cosediment with MTs polymerized in the presence of taxol, NFs dephosphorylated with Escherichia coli alkaline phosphatase began to coprecipitate with MTs. The dephosphorylated NFs bound to MTs but not to the unpolymerized tubulin dimer. The binding was not observed in the presence of high salt or with MTs containing microtubule-associated proteins. The cosedimentation experiments using purified NF subunit proteins showed that the dephosphorylation-induced binding of NFs to MTs was mediated by the largest subunit of NF (NF-H). Negative staining electron microscopy confirmed bindings of the dephosphorylated NFs and NF-H to MTs. Densitometric measurement of the bound and unbound NF-H after sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the binding of the dephosphorylated NF-H to MT was saturable and gave the following binding parameters. Approximately 1 mol of NF-H bound per 10 mol of tubulin dimer with a high affinity site (Kd = 3.8 x 10(-8) M) and per 16 mol of tubulin dimer with a low affinity site (Kd = 1.1 x 10(-7) M).

          Related collections

          Author and article information

          Comments

          Comment on this article