2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Azithromycin Polarizes Macrophages to an M2 Phenotype via Inhibition of the STAT1 and NF-κB Signaling Pathways

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Azithromycin is effective at controlling exaggerated inflammation and slowing the long-term decline of lung function in patients with cystic fibrosis. We previously demonstrated that the drug shifts macrophage polarization towards an alternative, anti-inflammatory phenotype. Here we investigated the immunomodulatory mechanism of azithromycin through its alteration of signaling via the NF-κB and STAT1 pathways. J774 murine macrophages were plated, polarized (with IFNγ, IL4/13, or with azithromycin plus IFNγ), and stimulated with LPS. The effect of azithromycin on NF-κB and STAT1 signaling mediators was assessed by Western blot, HTRF assay, nuclear translocation assay, and immunofluorescence. The drug’s effect on gene and protein expression of arginase was evaluated as a marker of alternative macrophage activation. Azithromycin blocked NF-κB activation by decreasing p65 nuclear translocation while blunting the degradation of IκBα due at least in part to a decrease in IKKβ kinase activity. A direct correlation was observed between increasing azithromycin concentrations and increased IKKβ protein expression. Moreover, incubation with the IKKβ inhibitor IKK16 decreased arginase expression and activity in azithromycin-treated cells, but not in cells treated with IL4 and IL13. Importantly, azithromycin treatment also decreased STAT1 phosphorylation in a concentration-dependent manner, an effect that was reversed with IKK16 treatment. We conclude that AZM anti-inflammatory mechanisms involve inhibition of the STAT1 and NF-κB signaling pathways through the drug’s effect on p65 nuclear translocation and IKKβ.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Lung infections associated with cystic fibrosis.

          While originally characterized as a collection of related syndromes, cystic fibrosis (CF) is now recognized as a single disease whose diverse symptoms stem from the wide tissue distribution of the gene product that is defective in CF, the ion channel and regulator, cystic fibrosis transmembrane conductance regulator (CFTR). Defective CFTR protein impacts the function of the pancreas and alters the consistency of mucosal secretions. The latter of these effects probably plays an important role in the defective resistance of CF patients to many pathogens. As the modalities of CF research have changed over the decades from empirical histological studies to include biophysical measurements of CFTR function, the clinical management of this disease has similarly evolved to effectively address the ever-changing spectrum of CF-related infectious diseases. These factors have led to the successful management of many CF-related infections with the notable exception of chronic lung infection with the gram-negative bacterium Pseudomonas aeruginosa. The virulence of P. aeruginosa stems from multiple bacterial attributes, including antibiotic resistance, the ability to utilize quorum-sensing signals to form biofilms, the destructive potential of a multitude of its microbial toxins, and the ability to acquire a mucoid phenotype, which renders this microbe resistant to both the innate and acquired immunologic defenses of the host.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-canonical NF-κB signaling pathway.

            The non-canonical NF-κB pathway is an important arm of NF-κB signaling that predominantly targets activation of the p52/RelB NF-κB complex. This pathway depends on the inducible processing of p100, a molecule functioning as both the precursor of p52 and a RelB-specific inhibitor. A central signaling component of the non-canonical pathway is NF-κB-inducing kinase (NIK), which integrates signals from a subset of TNF receptor family members and activates a downstream kinase, IκB kinase-α (IKKα), for triggering p100 phosphorylation and processing. A unique mechanism of NIK regulation is through its fate control: the basal level of NIK is kept low by a TRAF-cIAP destruction complex and signal-induced non-canonical NF-κB signaling involves NIK stabilization. Tight control of the fate of NIK is important, since deregulated NIK accumulation is associated with lymphoid malignancies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Duration of nuclear NF-kappaB action regulated by reversible acetylation.

              The nuclear expression and action of the nuclear factor kappa B (NF-kappaB) transcription factor requires signal-coupled phosphorylation and degradation of the IkappaB inhibitors, which normally bind and sequester this pleiotropically active factor in the cytoplasm. The subsequent molecular events that regulate the termination of nuclear NF-kappaB action remain poorly defined, although the activation of de novo IkappaBalpha gene expression by NF-kappaB likely plays a key role. Our studies now demonstrate that the RelA subunit of NF-kappaB is subject to inducible acetylation and that acetylated forms of RelA interact weakly, if at all, with IkappaBalpha. Acetylated RelA is subsequently deacetylated through a specific interaction with histone deacetylase 3 (HDAC3). This deacetylation reaction promotes effective binding to IkappaBalpha and leads in turn to IkappaBalpha-dependent nuclear export of the complex through a chromosomal region maintenance-1 (CRM-1)-dependent pathway. Deacetylation of RelA by HDAC3 thus acts as an intranuclear molecular switch that both controls the duration of the NF-kappaB transcriptional response and contributes to the replenishment of the depleted cytoplasmic pool of latent NF-kappaB-IkappaBalpha complexes.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The Journal of Immunology
                J.I.
                The American Association of Immunologists
                0022-1767
                1550-6606
                August 05 2019
                August 15 2019
                August 15 2019
                July 01 2019
                : 203
                : 4
                : 1021-1030
                Article
                10.4049/jimmunol.1801228
                6684391
                31263039
                88e8182f-104b-48e9-ae95-b16dddeb758d
                © 2019
                History

                Comments

                Comment on this article