13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phosphoinositide interacting regulator of TRP (Pirt) enhances TRPM8 channel activity in vitro via increasing channel conductance

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim:

          Pirt is a two-transmembrane domain protein that regulates the function of a variety of ion channels. Our previous study indicated that Pirt acts as a positive endogenous regulator of the TRPM8 channel. The aim of this study was to investigate the mechanism underlying the regulation of TRPM8 channel by Pirt.

          Methods:

          HEK293 cells were transfected with TRPM8+Pirt or TRPM8 alone. Menthol (1 mmol/L) was applied through perfusion to induce TRPM8-mediated voltage-dependent currents, which were recorded using a whole-cell recording technique. PIP2 (10 μmol/L) was added into the electrode pipettes (PI was taken as a control). Additionally, cell-attached single-channel recordings were conducted in CHO cells transfected with TRPM8+Pirt or TRPM8 alone, and menthol (1 mmol/L) was added into the pipette solution.

          Results:

          Either co-transfection with Pirt or intracellular application of PIP2 (but not PI) significantly enhanced menthol-induced TRPM8 currents. Furthermore, Pirt and PIP2 synergistically modulated menthol-induced TRPM8 currents. Single-channel recordings revealed that co-transfection with Pirt significantly increased the single channel conductance.

          Conclusion:

          Pirt and PIP2 synergistically enhance TRPM8 channel activity, and Pirt regulates TRPM8 channel activity by increasing the single channel conductance.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          A TRP channel that senses cold stimuli and menthol.

          A distinct subset of sensory neurons are thought to directly sense changes in thermal energy through their termini in the skin. Very little is known about the molecules that mediate thermoreception by these neurons. Vanilloid Receptor 1 (VR1), a member of the TRP family of channels, is activated by noxious heat. Here we describe the cloning and characterization of TRPM8, a distant relative of VR1. TRPM8 is specifically expressed in a subset of pain- and temperature-sensing neurons. Cells overexpressing the TRPM8 channel can be activated by cold temperatures and by a cooling agent, menthol. Our identification of a cold-sensing TRP channel in a distinct subpopulation of sensory neurons implicates an expanded role for this family of ion channels in somatic sensory detection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An introduction to TRP channels.

            The aim of this review is to provide a basic framework for understanding the function of mammalian transient receptor potential (TRP) channels, particularly as they have been elucidated in heterologous expression systems. Mammalian TRP channel proteins form six-transmembrane (6-TM) cation-permeable channels that may be grouped into six subfamilies on the basis of amino acid sequence homology (TRPC, TRPV, TRPM, TRPA, TRPP, and TRPML). Selected functional properties of TRP channels from each subfamily are summarized in this review. Although a single defining characteristic of TRP channel function has not yet emerged, TRP channels may be generally described as calcium-permeable cation channels with polymodal activation properties. By integrating multiple concomitant stimuli and coupling their activity to downstream cellular signal amplification via calcium permeation and membrane depolarization, TRP channels appear well adapted to function in cellular sensation. Our review of recent literature implicating TRP channels in neuronal growth cone steering suggests that TRPs may function more widely in cellular guidance and chemotaxis. The TRP channel gene family and its nomenclature, the encoded proteins and alternatively spliced variants, and the rapidly expanding pharmacology of TRP channels are summarized in online supplemental material.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.

              Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipase C (PLC) signalling pathways in primary afferent neurons. How these actions produce sensitization to physical or chemical stimuli has not been elucidated at the molecular level. Here, we show that bradykinin- or NGF-mediated potentiation of thermal sensitivity in vivo requires expression of VR1, a heat-activated ion channel on sensory neurons. Diminution of plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) levels through antibody sequestration or PLC-mediated hydrolysis mimics the potentiating effects of bradykinin or NGF at the cellular level. Moreover, recruitment of PLC-gamma to TrkA is essential for NGF-mediated potentiation of channel activity, and biochemical studies suggest that VR1 associates with this complex. These studies delineate a biochemical mechanism through which bradykinin and NGF produce hypersensitivity and might explain how the activation of PLC signalling systems regulates other members of the TRP channel family.
                Bookmark

                Author and article information

                Journal
                Acta Pharmacol Sin
                Acta Pharmacol. Sin
                Acta Pharmacologica Sinica
                Nature Publishing Group
                1671-4083
                1745-7254
                January 2016
                14 December 2015
                : 37
                : 1
                : 98-104
                Affiliations
                [1 ]College of Biology and Environmental Sciences, Jishou University , Jishou 416000, China
                [2 ]College of Basic Medicine, Nanjing University of Chinese Medicine , Nanjing 210023, China
                [3 ]Howard Hughes Medical Institute, Johns Hopkins University School of Medicine , Baltimore, MD 21205, USA
                Author notes
                Article
                aps2015110
                10.1038/aps.2015.110
                4722975
                26657057
                89561503-f15a-48d1-9aa5-7f0e790da2ac
                Copyright © 2015 CPS and SIMM
                History
                : 06 September 2015
                : 01 November 2015
                Categories
                Original Article

                Pharmacology & Pharmaceutical medicine
                trpm8,menthol,pirt,pip2,pi,whole-cell recording,single channel conductance

                Comments

                Comment on this article