22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multivariate cross-classification: applying machine learning techniques to characterize abstraction in neural representations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here we highlight an emerging trend in the use of machine learning classifiers to test for abstraction across patterns of neural activity. When a classifier algorithm is trained on data from one cognitive context, and tested on data from another, conclusions can be drawn about the role of a given brain region in representing information that abstracts across those cognitive contexts. We call this kind of analysis Multivariate Cross-Classification (MVCC), and review several domains where it has recently made an impact. MVCC has been important in establishing correspondences among neural patterns across cognitive domains, including motor-perception matching and cross-sensory matching. It has been used to test for similarity between neural patterns evoked by perception and those generated from memory. Other work has used MVCC to investigate the similarity of representations for semantic categories across different kinds of stimulus presentation, and in the presence of different cognitive demands. We use these examples to demonstrate the power of MVCC as a tool for investigating neural abstraction and discuss some important methodological issues related to its application.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Distributed and overlapping representations of faces and objects in ventral temporal cortex.

          The functional architecture of the object vision pathway in the human brain was investigated using functional magnetic resonance imaging to measure patterns of response in ventral temporal cortex while subjects viewed faces, cats, five categories of man-made objects, and nonsense pictures. A distinct pattern of response was found for each stimulus category. The distinctiveness of the response to a given category was not due simply to the regions that responded maximally to that category, because the category being viewed also could be identified on the basis of the pattern of response when those regions were excluded from the analysis. Patterns of response that discriminated among all categories were found even within cortical regions that responded maximally to only one category. These results indicate that the representations of faces and objects in ventral temporal cortex are widely distributed and overlapping.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Information-based functional brain mapping.

            The development of high-resolution neuroimaging and multielectrode electrophysiological recording provides neuroscientists with huge amounts of multivariate data. The complexity of the data creates a need for statistical summary, but the local averaging standardly applied to this end may obscure the effects of greatest neuroscientific interest. In neuroimaging, for example, brain mapping analysis has focused on the discovery of activation, i.e., of extended brain regions whose average activity changes across experimental conditions. Here we propose to ask a more general question of the data: Where in the brain does the activity pattern contain information about the experimental condition? To address this question, we propose scanning the imaged volume with a "searchlight," whose contents are analyzed multivariately at each location in the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mirror neurons and the simulation theory of mind-reading.

              V Gallese (1998)
              A new class of visuomotor neuron has been recently discovered in the monkey's premotor cortex: mirror neurons. These neurons respond both when a particular action is performed by the recorded monkey and when the same action, performed by another individual, is observed. Mirror neurons appear to form a cortical system matching observation and execution of goal-related motor actions. Experimental evidence suggests that a similar matching system also exists in humans. What might be the functional role of this matching system? One possible function is to enable an organism to detect certain mental states of observed conspecifics. This function might be part of, or a precursor to, a more general mind-reading ability. Two different accounts of mind-reading have been suggested. According to `theory theory', mental states are represented as inferred posits of a naive theory. According to `simulation theory', other people's mental states are represented by adopting their perspective: by tracking or matching their states with resonant states of one's own. The activity of mirror neurons, and the fact that observers undergo motor facilitation in the same muscular groups as those utilized by target agents, are findings that accord well with simulation theory but would not be predicted by theory theory.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                25 March 2015
                2015
                : 9
                : 151
                Affiliations
                [1] 1Brain and Creativity Institute, University of Southern California Los Angeles, CA, USA
                [2] 2Department of Psychology, University of Southern California Los Angeles, CA, USA
                [3] 3Department of Gerontology, University of Southern California Los Angeles, CA, USA
                Author notes

                Edited by: Leonhard Schilbach, Max-Planck Institute of Psychiatry, Germany

                Reviewed by: Luke J. Chang, University of Colorado, USA; Tyler Davis, Texas Tech University, USA

                *Correspondence: Jonas T. Kaplan, Brain and Creativity Institute, University of Southern California, 3520A McClintock Ave, Los Angeles, CA 90089, USA jtkaplan@ 123456usc.edu
                Article
                10.3389/fnhum.2015.00151
                4373279
                25859202
                8969a758-3cd7-47fd-b7c1-707ccad81541
                Copyright © 2015 Kaplan, Man and Greening.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 December 2014
                : 04 March 2015
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 86, Pages: 12, Words: 10159
                Categories
                Neuroscience
                Review

                Neurosciences
                mpva,multivariate pattern analysis techniques,fmri methods,multivariate pattern classification,multivariate pattern analysis,similarity-based representation

                Comments

                Comment on this article