5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Correlation of Exon 3 β-catenin Mutations with Glutamine Synthetase Staining Patterns in Hepatocellular Adenoma and Hepatocellular Carcinoma

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The current clinical practice is based on the assumption of strong correlation between diffuse glutamine synthetase expression and β-catenin activation in hepatocellular adenoma and hepatocellular carcinoma. This high correlation is based on limited data, and may represent an oversimplification as glutamine synthetase staining patterns show wide variability in clinical practice. Standardized criteria for interpreting diverse glutamine synthetase patterns, and the association between each pattern and β-catenin mutations is not clearly established. This study examines the correlation between glutamine synthetase staining patterns and β-catenin mutations in 15 typical hepatocellular adenomas, 5 atypical hepatocellular neoplasms and 60 hepatocellular carcinomas. Glutamine synthetase staining was classified into one of three patterns: (a) diffuse homogeneous: moderate to strong cytoplasmic staining in more than 90% of lesional cells, without a map-like pattern, (b) diffuse heterogeneous: moderate to strong staining in 50–90% of lesional cells, without a map-like pattern, and (c) patchy: moderate to strong staining in <50% of lesional cells (often perivascular), or weak staining irrespective of extent, and all other staining patterns (including negative cases). Sanger sequencing of CTNNB1 exon 3 was performed in all cases. Of hepatocellular tumors with diffuse glutamine synthetase staining (homogeneous or heterogeneous), an exon 3 β-catenin mutation was detected in 33% (2/6) of typical hepatocellular adenoma, 75% (3/4) of atypical hepatocellular neoplasm and 17% (8/47) of hepatocellular carcinomas. An exon 3 mutation was also observed in 15% (2/13) of hepatocellular carcinomas with patchy glutamine synthetase staining. The results show a modest correlation between diffuse glutamine synthetase immunostaining and exon 3 β-catenin mutations in hepatocellular adenoma and hepatocellular carcinoma with discrepancy rates exceeding 50% in both hepatocellular adenoma and hepatocellular carcinoma. The interpretation of β-catenin activation based on glutamine synthetase staining should be done with caution, and the undetermined significance of various glutamine synthetase patterns should be highlighted in pathology reports.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma.

          Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Here, we performed high-resolution copy-number analysis on 125 HCC tumors and whole-exome sequencing on 24 of these tumors. We identified 135 homozygous deletions and 994 somatic mutations of genes with predicted functional consequences. We found new recurrent alterations in four genes (ARID1A, RPS6KA3, NFE2L2 and IRF2) not previously described in HCC. Functional analyses showed tumor suppressor properties for IRF2, whose inactivation, exclusively found in hepatitis B virus (HBV)-related tumors, led to impaired TP53 function. In contrast, inactivation of chromatin remodelers was frequent and predominant in alcohol-related tumors. Moreover, association of mutations in specific genes (RPS6KA3-AXIN1 and NFE2L2-CTNNB1) suggested that Wnt/β-catenin signaling might cooperate in liver carcinogenesis with both oxidative stress metabolism and Ras/mitogen-activated protein kinase (MAPK) pathways. This study provides insight into the somatic mutational landscape in HCC and identifies interactions between mutations in oncogene and tumor suppressor gene mutations related to specific risk factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1.

            The Wnt signaling pathway is essential for development and organogenesis. Wnt signaling stabilizes beta-catenin, which accumulates in the cytoplasm, binds to 1-cell factor (TCF; also known as lymphocyte enhancer-binding factor, LEF) and then upregulates downstream genes. Mutations in CTNNB1 (encoding beta-catenin) or APC (adenomatous polyposis coli) have been reported in human neoplasms including colon cancers and hepatocellular carcinomas (HCCs). Because HCC5 tend to show accumulation of beta-catenin more often than mutations in CTNNB1, we looked for mutations in AXIN1, encoding a key factor for Wnt signaling, in 6 HCC cell lines and 100 primary HCC5. Among the 4 cell lines and 87 HCC5 in which we did not detect CTNNB1 mutations, we identified AXIN1 mutations in 3 cell lines and 6 mutations in 5 of the primary HCCs. In cell lines containing mutations in either gene, we observed increased DNA binding of TCF associated with beta-catenin in nuclei. Adenovirus mediated gene transfer of wild-type AXINI induced apoptosis in hepatocellular and colorectal cancer cells that had accumulated beta-catenin as a consequence of either APC, CTNNB1 or AXIN1 mutation, suggesting that axin may be an effective therapeutic molecule for suppressing growth of hepatocellular and colorectal cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas.

              Hepatocellular carcinoma (HCC) is the major primary malignant tumor in the human liver, but the molecular changes leading to liver cell transformation remain largely unknown. The Wnt-beta-catenin pathway is activated in colon cancers and some melanoma cell lines, but has not yet been investigated in HCC. We have examined the status of the beta-catenin gene in different transgenic mouse lines of HCC obtained with the oncogenes c-myc or H-ras. Fifty percent of the hepatic tumors in these transgenic mice had activating somatic mutations within the beta-catenin gene similar to those found in colon cancers and melanomas. These alterations in the beta-catenin gene (point mutations or deletions) lead to a disregulation of the signaling function of beta-catenin and thus to carcinogenesis. We then analyzed human HCCs and found similar mutations in eight of 31 (26%) human liver tumors tested and in HepG2 and HuH6 hepatoma cells. The mutations led to the accumulation of beta-catenin in the nucleus. Thus alterations in the beta-catenin gene frequently are selected for during liver tumorigenesis and suggest that disregulation of the Wnt-beta-catenin pathway is a major event in the development of HCC in humans and mice.
                Bookmark

                Author and article information

                Journal
                8806605
                6644
                Mod Pathol
                Mod. Pathol.
                Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
                0893-3952
                1530-0285
                7 December 2016
                29 July 2016
                November 2016
                29 January 2017
                : 29
                : 11
                : 1370-1380
                Affiliations
                [1 ]Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
                [2 ]Department of Gastrointestinal Surgery, People’s Republic of China
                [3 ]Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, United States
                [4 ]School of Pharmacy, Hubei University of Chinese Medicine, Hubei, People’s Republic of China
                [5 ]Department of Gastroenterology, Guizhou Provincial People's Hospital, The Affiliated People's Hospital of Guizhou Medical University, Guizhou, People’s Republic of China
                [6 ]Pathology, California Permanente Medical Group, Woodland Hills, CA, United States
                Author notes
                Please direct requests for page proofs and reprints, and all correspondence to Sanjay Kakar, MD., Address: 505 Parnassus Ave, M590, San Francisco, CA 94143
                [a]

                These authors contributed equally to the work and are co-first authors.

                Article
                NIHMS798270
                10.1038/modpathol.2016.122
                5149418
                27469330
                89b61946-c0fc-4a7e-ab05-0b7ee527d083

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Pathology
                Pathology

                Comments

                Comment on this article