3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bile formation and secretion: An update

      ,
      Journal of Hepatology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes.

          Hepatitis B and D viruses (HBV and HDV) are human pathogens with restricted host ranges and high selectivity for hepatocytes; the HBV L-envelope protein interacts specifically with a receptor on these cells. We aimed to identify this receptor and analyze whether it is the recently described sodium-taurocholate co-transporter polypeptide (NTCP), encoded by the SLC10A1 gene. To identify receptor candidates, we compared gene expression patterns between differentiated HepaRG cells, which express the receptor, and naïve cells, which do not. Receptor candidates were evaluated by small hairpin RNA silencing in HepaRG cells; the ability of receptor expression to confer binding and infection were tested in transduced hepatoma cell lines. We used interspecies domain swapping to identify motifs for receptor-mediated host discrimination of HBV and HDV binding and infection. Bioinformatic analyses of comparative expression arrays confirmed that NTCP, which was previously identified through a biochemical approach is a bona fide receptor for HBV and HDV. NTCPs from rat, mouse, and human bound Myrcludex B, a peptide ligand derived from the HBV L-protein. Myrcludex B blocked NTCP transport of bile salts; small hairpin RNA-mediated knockdown of NTCP in HepaRG cells prevented their infection by HBV or HDV. Expression of human but not mouse NTCP in HepG2 and HuH7 cells conferred a limited cell-type-related and virus-dependent susceptibility to infection; these limitations were overcome when cells were cultured with dimethyl sulfoxide. We identified 2 short-sequence motifs in human NTCP that were required for species-specific binding and infection by HBV and HDV. Human NTCP is a specific receptor for HBV and HDV. NTCP-expressing cell lines can be efficiently infected with these viruses, and might be used in basic research and high-throughput screening studies. Mapping of motifs in NTCPs have increased our understanding of the species specificities of HBV and HDV, and could lead to small animal models for studies of viral infection and replication. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bile acid transporters and regulatory nuclear receptors in the liver and beyond

            Summary Bile acid (BA) transporters are critical for maintenance of the enterohepatic BA circulation where BAs exert their multiple physiological functions including stimulation of bile flow, intestinal absorption of lipophilic nutrients, solubilization and excretion of cholesterol, as well as antimicrobial and metabolic effects. Tight regulation of BA transporters via nuclear receptors is necessary to maintain proper BA homeostasis. Hereditary and acquired defects of BA transporters are involved in the pathogenesis of several hepatobiliary disorders including cholestasis, gallstones, fatty liver disease and liver cancer, but also play a role in intestinal and metabolic disorders beyond the liver. Thus, pharmacological modification of BA transporters and their regulatory nuclear receptors opens novel treatment strategies for a wide range of disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut.

              Paracellular transport varies widely among epithelia of the gastrointestinal tract. We determined whether members of the claudin family of tight junction proteins are differentially expressed consistent with a potential role in creating these variable properties. Rabbit polyclonal antibodies were produced against peptides from claudins 2 through 5. The distribution of individual claudins was detected by immunoblotting, and their cell type and subcellular localization were determined by immunofluorescence on cryosections of rat liver, pancreas, stomach, and small and large intestine. All antibodies detected single bands of the expected size on immunoblots and were monospecific based on peptide competition studies. Immunoblotting detected strong differences among tissues in the expression level of each claudin. Immunolocalization confirmed these differences and revealed striking variations in expression patterns. In the liver, claudin 2 shows a lobular gradient increasing from periportal to pericentral hepatocytes, claudin 3 is uniformly expressed, claudin 4 is absent, and claudin 5 is only expressed in endothelial junctions. In the pancreas, claudin 2 is only detected in junctions of the duct epithelia, claudin 5 only in junctions of acinar cells, whereas claudin 3 and 4 are in both. Among differences in the gut are a crypt-to-villus decrease in claudin 2, a highly restricted expression of claudin 4 to colonic surface cells, and the finding that some claudins can be junctional, lateral, or show a gradient in junctional vs. lateral localization along the crypt-to-villus surface axis. Claudins have very different expression patterns among and within gastrointestinal tissues. We propose these patterns underlie differences in paracellular permeability properties, such as electrical resistance and ion selectivity that would complement known differences in transcellular transport.
                Bookmark

                Author and article information

                Journal
                Journal of Hepatology
                Journal of Hepatology
                Elsevier BV
                01688278
                July 2021
                July 2021
                : 75
                : 1
                : 190-201
                Article
                10.1016/j.jhep.2021.02.011
                33617926
                89c00e88-7b0c-48d1-8f08-a0f3ccd8bbcd
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article