Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Olfactory ensheathing cells reduce duration of autonomic dysreflexia in rats with high spinal cord injury.

      Autonomic Neuroscience
      Analysis of Variance, Animals, Autonomic Dysreflexia, etiology, pathology, surgery, Autonomic Fibers, Preganglionic, metabolism, Blood Pressure, physiology, Cell Count, methods, Cell Survival, Cell Transplantation, Disease Models, Animal, Gastrointestinal Tract, physiopathology, Green Fluorescent Proteins, Heart Rate, Male, NADPH Dehydrogenase, diagnostic use, Neuroglia, Neurons, Olfactory Bulb, cytology, Rats, Rats, Wistar, Spinal Cord, Spinal Cord Injuries, complications, Sympathetic Nervous System, Telemetry, Time Factors, Tubulin

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autonomic dysreflexia is a common complication in high spinal cord injury and can result in serious consequences and death. Here we have examined the effect of acute transplantation of olfactory ensheathing cells on cardiovascular functions in rats. After T4 transection, radio-telemetric recording in conscious animals was used to study blood pressure and heart rate at rest and during autonomic dysreflexia for up to 8 weeks post-injury. Olfactory ensheathing cells from syngeneic rats were transplanted at the injury site; control animals received culture medium only. At the study end point, we examined morphometric features of sympathetic preganglionic neurons above and below the injury. T4 transection resulted in a fall in resting mean arterial pressure and an increase in resting heart rate. Colorectal distension, used to trigger autonomic dysreflexia, caused episodic hypertension and bradycardia. Although the cell transplantation had no effect on resting cardiovascular parameters, it led to a significantly faster recovery from hypertension, with the recovery time shortened by approximately 25%. The transection resulted in an increase in soma size of sympathetic preganglionic neurons above and below the injury. OEC transplantation normalised this change below the injury and increased dendritic length of preganglionic neurons above the injury, compared to controls. It has been proposed that changes in sympathetic preganglionic neurons following spinal cord transection may be related to the development of autonomic dysreflexia. Our results suggest that olfactory ensheathing cells may alter the morphology of these neurons, and hence modify their activity in the neuronal networks responsible for the dysreflexic reaction. 2009 Elsevier B.V. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article