2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Survival and Integration of Transplanted Olfactory Ensheathing Cells are Crucial for Spinal Cord Injury Repair: Insights from the Last 10 Years of Animal Model Studies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system, support the natural regeneration of the olfactory nerve that occurs throughout life. OECs thus exhibit unique properties supporting neuronal survival and growth. Transplantation of OECs is emerging as a promising treatment for spinal cord injury; however, outcomes in both animals and humans are variable and the method needs improvement and standardization. A major reason for the discrepancy in functional outcomes is the variability in survival and integration of the transplanted cells, key factors for successful spinal cord regeneration. Here, we review the outcomes of OEC transplantation in rodent models over the last 10 years, with a focus on survival and integration of the transplanted cells. We identify the key factors influencing OEC survival: injury type, source of transplanted cells, co-transplantation with other cell types, number and concentration of cells, method of delivery, and time of transplantation after the injury. We found that two key issues are hampering optimization and standardization of OEC transplantation: lack of (1) reliable methods for identifying transplanted cells, and (2) three-dimensional systems for OEC delivery. To develop OEC transplantation as a successful and standardized therapy for spinal cord injury, we must address these issues and increase our understanding of the complex parameters influencing OEC survival.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          The origin and development of glial cells in peripheral nerves.

          During the development of peripheral nerves, neural crest cells generate myelinating and non-myelinating glial cells in a process that parallels gliogenesis from the germinal layers of the CNS. Unlike central gliogenesis, neural crest development involves a protracted embryonic phase devoted to the generation of, first, the Schwann cell precursor and then the immature Schwann cell, a cell whose fate as a myelinating or non-myelinating cell has yet to be determined. Embryonic nerves therefore offer a particular opportunity to analyse the early steps of gliogenesis from transient multipotent stem cells, and to understand how this process is integrated with organogenesis of peripheral nerves.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cellular inflammatory response in human spinal cords after injury.

            Spinal cord injury (SCI) provokes an inflammatory response that generates substantial secondary damage within the cord but also may contribute to its repair. Anti-inflammatory treatment of human SCI and its timing must be based on knowledge of the types of cells participating in the inflammatory response, the time after injury when they appear and then decrease in number, and the nature of their actions. Using post-mortem spinal cords, we evaluated the time course and distribution of pathological change, infiltrating neutrophils, monocytes/macrophages and lymphocytes, and microglial activation in injured spinal cords from patients who were 'dead at the scene' or who survived for intervals up to 1 year after SCI. SCI caused zones of pathological change, including areas of inflammation and necrosis in the acute cases, and cystic cavities with longer survival (Zone 1), mantles of less severe change, including axonal swellings, inflammation and Wallerian degeneration (Zone 2) and histologically intact areas (Zone 3). Zone 1 areas increased in size with time after injury whereas the overall injury (size of the Zones 1 and 2 combined) remained relatively constant from the time (1-3 days) when damage was first visible. The distribution of inflammatory cells correlated well with the location of Zone 1, and sometimes of Zone 2. Neutrophils, visualized by their expression of human neutrophil alpha-defensins (defensin), entered the spinal cord by haemorrhage or extravasation, were most numerous 1-3 days after SCI, and were detectable for up to 10 days after SCI. Significant numbers of activated CD68-immunoreactive ramified microglia and a few monocytes/macrophages were in injured tissue within 1-3 days of SCI. Activated microglia, a few monocytes/macrophages and numerous phagocytic macrophages were present for weeks to months after SCI. A few CD8(+) lymphocytes were in the injured cords throughout the sampling intervals. Expression by the inflammatory cells of the oxidative enzymes myeloperoxidase (MPO) and nicotinamide adenine dinucleotide phosphate oxidase (gp91(phox)), and of the pro-inflammatory matrix metalloproteinase (MMP)-9, was analysed to determine their potential to cause oxidative and proteolytic damage. Oxidative activity, inferred from MPO and gp91(phox) immunoreactivity, was primarily associated with neutrophils and activated microglia. Phagocytic macrophages had weak or no expression of MPO or gp91(phox). Only neutrophils expressed MMP-9. These data indicate that potentially destructive neutrophils and activated microglia, replete with oxidative and proteolytic enzymes, appear within the first few days of SCI, suggesting that anti-inflammatory 'neuroprotective' strategies should be directed at preventing early neutrophil influx and modifying microglial activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment.

              Traumatic injury to the central nervous system results in the disruption of the blood brain/spinal barrier, followed by the invasion of cells and other components of the immune system that can aggravate injury and affect subsequent repair and regeneration. Although studies of chronic neuroinflammation in the injured spinal cord of animals are clinically relevant to most patients living with traumatic injury to the brain or spinal cord, very little is known about chronic neuroinflammation, though several studies have tested the role of neuroinflammation in the acute period after injury. The present study characterizes a novel cell preparation method that assesses, quickly and effectively, the changes in the principal immune cell types by flow cytometry in the injured spinal cord, daily for the first 10 days and periodically up to 180 days after spinal cord injury. These data quantitatively demonstrate a novel time-dependent multiphasic response of cellular inflammation in the spinal cord after spinal cord injury and are verified by quantitative stereology of immunolabelled spinal cord sections at selected time points. The early phase of cellular inflammation is comprised principally of neutrophils (peaking 1 day post-injury), macrophages/microglia (peaking 7 days post-injury) and T cells (peaking 9 days post-injury). The late phase of cellular inflammation was detected after 14 days post-injury, peaked after 60 days post-injury and remained detectable throughout 180 days post-injury for all three cell types. Furthermore, the late phase of cellular inflammation (14-180 days post-injury) did not coincide with either further improvements, or new decrements, in open-field locomotor function after spinal cord injury. However, blockade of chemoattractant C5a-mediated inflammation after 14 days post-injury reduced locomotor recovery and myelination in the injured spinal cord, suggesting that the late inflammatory response serves a reparative function. Together, these data provide new insight into cellular inflammation of spinal cord injury and identify a surprising and extended multiphasic response of cellular inflammation. Understanding the role of this multiphasic response in the pathophysiology of spinal cord injury could be critical for the design and implementation of rational therapeutic treatment strategies, including both cell-based and pharmacological interventions.
                Bookmark

                Author and article information

                Journal
                Cell Transplant
                Cell Transplant
                CLL
                spcll
                Cell Transplantation
                SAGE Publications (Sage CA: Los Angeles, CA )
                0963-6897
                1555-3892
                15 November 2019
                December 2019
                : 28
                : 1 Suppl
                : 132S-159S
                Affiliations
                [1 ]Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
                [2 ]Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
                [3 ]Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia
                Author notes
                [*]Jenny Ekberg, Griffith University - Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia. Email: j.ekberg@ 123456griffith.edu.au
                Author information
                https://orcid.org/0000-0002-2000-4282
                https://orcid.org/0000-0001-5151-4966
                Article
                10.1177_0963689719883823
                10.1177/0963689719883823
                7016467
                31726863
                c1c192ca-d084-4340-8d1a-b0ce817b9fce
                © The Author(s) 2019

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 18 July 2019
                : 3 September 2019
                : 27 September 2019
                Funding
                Funded by: Griffith University, https://doi.org/10.13039/501100001791;
                Award ID: International Student (PhD) stipend to RR
                Categories
                Reviews
                Custom metadata
                ts3

                olfactory ensheathing cells,spinal cord injury,cell survival,cell integration,glial cells

                Comments

                Comment on this article