15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-Steroidal Anti-Inflammatory Drugs in Alzheimer's Disease and Parkinson's Disease: Reconsidering the Role of Neuroinflammation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases with age as the greatest risk factor. As the general population experiences extended life span, preparation for the prevention and treatment of these and other age-associated neurological diseases are warranted. Since epidemiological studies suggested that non-steroidal anti-inflammatory drug (NSAID) use decreased risk for AD and PD, increasing attention has been devoted to understanding the costs and benefits of the innate neuroinflammatory response to functional recovery following pathology onset. This review will provide a general overview on the role of neuroinflammation in these neurodegenerative diseases and an update on NSAID treatment in recent experimental animal models, epidemiological analyses, and clinical trials.

          Related collections

          Most cited references185

          • Record: found
          • Abstract: not found
          • Article: not found

          Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs.

          J R Vane (1971)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation and Alzheimer's disease.

            Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid beta peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of apolipoprotein E in Alzheimer's disease.

              The epsilon4 allele of apolipoprotein E (APOE) is the major genetic risk factor for Alzheimer's disease (AD). Although there have been numerous studies attempting to elucidate the underlying mechanism for this increased risk, how apoE4 influences AD onset and progression has yet to be proven. However, prevailing evidence suggests that the differential effects of apoE isoforms on Abeta aggregation and clearance play the major role in AD pathogenesis. Other potential mechanisms, such as the differential modulation of neurotoxicity and tau phosphorylation by apoE isoforms as well as its role in synaptic plasticity and neuroinflammation, have not been ruled out. Inconsistent results among studies have made it difficult to define whether the APOE epsilon4 allele represents a gain of toxic function, a loss of neuroprotective function, or both. Therapeutic strategies based on apoE propose to reduce the toxic effects of apoE4 or to restore the physiological, protective functions of apoE.
                Bookmark

                Author and article information

                Journal
                Pharmaceuticals (Basel)
                Pharmaceuticals (Basel)
                pharmaceuticals
                Pharmaceuticals
                MDPI
                1424-8247
                02 June 2010
                June 2010
                : 3
                : 6
                : 1812-1841
                Affiliations
                Department of Biology, Carleton College, one north college street, Northfield, MN 55057, USA
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: amoore@ 123456carleton.edu ; Tel.: +1-507-222-5981; Fax: +1-507-222-5757.
                Article
                pharmaceuticals-03-01812
                10.3390/ph3061812
                4033954
                27713331
                8a54eff3-263e-41a7-9ae2-718b5d69305c
                © 2010 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 08 April 2010
                : 10 May 2010
                : 02 June 2010
                Categories
                Review

                non-steroidal anti-inflammatory drugs,alzheimer's disease,parkinson's disease,cyclooxygenase,neuroinflammation

                Comments

                Comment on this article