32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Callose (β-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Callose (β-1,3 glucan) separates developing pollen grains, preventing their underlying walls (exine) from fusing. The pollen tubes that transport sperm to female gametes also contain callose, both in their walls as well as in the plugs that segment growing tubes. Mutations in CalS5, one of several Arabidopsis β-1,3 glucan synthases, were previously shown to disrupt callose formation around developing microspores, causing aberrations in exine patterning, degeneration of developing microspores, and pollen sterility.

          Results

          Here, we describe three additional cals5 alleles that similarly alter exine patterns, but instead produce fertile pollen. Moreover, one of these alleles ( cals5-3) resulted in the formation of pollen tubes that lacked callose walls and plugs. In self-pollinated plants, these tubes led to successful fertilization, but they were at a slight disadvantage when competing with wild type.

          Conclusion

          Contrary to a previous report, these results demonstrate that a structured exine layer is not required for pollen development, viability or fertility. In addition, despite the presence of callose-enriched walls and callose plugs in pollen tubes, the results presented here indicate that callose is not required for pollen tube functions.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide insertional mutagenesis of Arabidopsis thaliana.

          J Alonso (2003)
          Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels.

            During angiosperm reproduction, pollen grains form a tube that navigates through female tissues to the micropyle, delivering sperm to the egg; the signals that mediate this process are poorly understood. Here, we describe a role for gamma-amino butyric acid (GABA) in pollen tube growth and guidance. In vitro, GABA stimulates pollen tube growth, although vast excesses are inhibitory. The Arabidopsis POP2 gene encodes a transaminase that degrades GABA and contributes to the formation of a gradient leading up to the micropyle. pop2 flowers accumulate GABA, and the growth of many pop2 pollen tubes is arrested, consistent with their in vitro GABA hypersensitivity. Some pop2 tubes continue to grow toward ovules, yet they are misguided, presumably because they target ectopic GABA on the ovule surface. Interestingly, wild-type tubes exhibit normal growth and guidance in pop2 pistils, perhaps by degrading excess GABA and sharpening the gradient leading to the micropyle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative analysis of the Arabidopsis pollen transcriptome.

              We present a genome-wide view of the male gametophytic transcriptome in Arabidopsis based on microarray analysis. In comparison with the transcriptome of the sporophyte throughout development, the pollen transcriptome showed reduced complexity and a unique composition. We identified 992 pollen-expressed mRNAs, nearly 40% of which were detected specifically in pollen. Analysis of the functional composition of the pollen transcriptome revealed the over-representation of mRNAs encoding proteins involved in cell wall metabolism, cytoskeleton, and signaling and under-representation of mRNAs involved in transcription and protein synthesis. For several gene families, we observed a common pattern of mutually exclusive gene expression between pollen and sporophytic tissues for different gene family members. Our results provide a 50-fold increase in the knowledge of genes expressed in Arabidopsis pollen. Moreover, we also detail the extensive overlap (61%) of the pollen transcriptome with that of the sporophyte, which provides ample potential to influence sporophytic fitness through gametophytic selection.
                Bookmark

                Author and article information

                Journal
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central (London )
                1471-2229
                2005
                7 October 2005
                : 5
                : 22
                Affiliations
                [1 ]Howard Hughes Medical Institute, Department. of Molecular Genetics and Cell Biology, University of Chicago, Chicago IL 60637, USA
                [2 ]Department of Chemistry, Graduate School of Science, Nagoya University, Chikusaku, Nagoya 464-8602, Japan
                Article
                1471-2229-5-22
                10.1186/1471-2229-5-22
                1274334
                16212660
                8a76821c-d67c-450f-8ce9-847f4b13f469
                Copyright © 2005 Nishikawa et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 June 2005
                : 7 October 2005
                Categories
                Research Article

                Plant science & Botany
                Plant science & Botany

                Comments

                Comment on this article