2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic Role of Sirtuins Targeting Unfolded Protein Response, Coagulation, and Inflammation in Hypoxia-Induced Thrombosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thrombosis remains one of the leading causes of morbidity and mortality across the world. Many pathological milieus in the body resulting from multiple risk factors escort thrombosis. Hypoxic condition is one such risk factor that disturbs the integrity of endothelial cells to cause an imbalance between anticoagulant and procoagulant proteins. Hypoxia generates reactive oxygen species (ROS) and triggers inflammatory pathways to augment the coagulation cascade. Hypoxia in cells also activates unfolded protein response (UPR) signaling pathways in the endoplasmic reticulum (ER), which tries to restore ER homeostasis and function. But the sustained UPR linked with inflammation, generation of ROS and apoptosis stimulates the severity of thrombosis in the body. Sirtuins, a group of seven proteins, play a vast role in bringing down inflammation, oxidative and ER stress and apoptosis. As a result, sirtuins might provide a therapeutic approach towards the treatment or prevention of hypoxia-induced thrombosis. Sirtuins modulate hypoxia-inducible factors (HIFs) and counteract ER stress-induced apoptosis by attenuating protein kinase RNA-like endoplasmic reticulum kinase (PERK)/Eukaryotic translation initiation factor 2α (eIF2α) pathway activation. It prevents ER-stress mediated inflammation by targeting X-Box Binding Protein 1 (XBP1) and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κβ) signaling through deacetylation. Sirtuins also obstruct nucleotide-binding domain, leucine-rich-containing family, pyrin domain containing 3 (NLRP3) inflammasome activation to reduce the expression of several pro-inflammatory molecules. It protects cells against oxidative stress by targeting nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione (GSH), forkhead box O3 (FOXO3), superoxide dismutase (SOD), catalase (CAT), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), glucose-6-phosphate dehydrogenase (G6PD), phosphoglucomutase-2 (PGAM2), and NF-κB, to name few. This review, thus, discusses the potential role of sirtuins as a new treatment for hypoxia-induced thrombosis that involves an intersection of UPR and inflammatory pathways in its pathological manifestation.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.

          Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca(2+), etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca(2+)). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo. Copyright © 2014 the American Physiological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The unfolded protein response: from stress pathway to homeostatic regulation.

            The vast majority of proteins that a cell secretes or displays on its surface first enter the endoplasmic reticulum (ER), where they fold and assemble. Only properly assembled proteins advance from the ER to the cell surface. To ascertain fidelity in protein folding, cells regulate the protein-folding capacity in the ER according to need. The ER responds to the burden of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways, collectively termed the unfolded protein response (UPR). Together, at least three mechanistically distinct branches of the UPR regulate the expression of numerous genes that maintain homeostasis in the ER or induce apoptosis if ER stress remains unmitigated. Recent advances shed light on mechanistic complexities and on the role of the UPR in numerous diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The unfolded protein response: controlling cell fate decisions under ER stress and beyond.

              Protein-folding stress at the endoplasmic reticulum (ER) is a salient feature of specialized secretory cells and is also involved in the pathogenesis of many human diseases. ER stress is buffered by the activation of the unfolded protein response (UPR), a homeostatic signalling network that orchestrates the recovery of ER function, and failure to adapt to ER stress results in apoptosis. Progress in the field has provided insight into the regulatory mechanisms and signalling crosstalk of the three branches of the UPR, which are initiated by the stress sensors protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α) and activating transcription factor 6 (ATF6). In addition, novel physiological outcomes of the UPR that are not directly related to protein-folding stress, such as innate immunity, metabolism and cell differentiation, have been revealed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                05 November 2021
                2021
                : 12
                : 733453
                Affiliations
                [1] 1Department of Biotechnology, Jamia Millia Islamia , New Delhi, India
                [2] 2Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology , New Delhi, India
                Author notes

                Edited by: Simona Martinotti, Università del Piemonte Orientale, Italy

                Reviewed by: Erik Alexander Blackwood, University of Arizona, United States; Elia Ranzato, University of Eastern Piedmont, Italy

                Mohammad Zahid Ashraf, zashraf@ 123456jmi.ac.in

                These authors have contributed equally to this work

                This article was submitted to Redox Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2021.733453
                8602789
                34803727
                8a7ccc20-c38f-4fdc-a904-a89c2a13abae
                Copyright © 2021 Sadia, Ashraf and Mishra.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 July 2021
                : 19 October 2021
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 129, Pages: 13, Words: 10343
                Funding
                Funded by: Science and Engineering Research Board-Department of Science and Technology, Government of India
                Funded by: Council of Scientific and Industrial Research, India , doi 10.13039/501100001412;
                Categories
                Physiology
                Review

                Anatomy & Physiology
                sirtuins,thrombosis,hypoxia,inflammation,unfolded protein response
                Anatomy & Physiology
                sirtuins, thrombosis, hypoxia, inflammation, unfolded protein response

                Comments

                Comment on this article