4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dissecting the Interaction between Nitric Oxide Synthase (NOS) and Caveolin : FUNCTIONAL SIGNIFICANCE OF THE NOS CAVEOLIN BINDING DOMAININ VIVO

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Caveolin, a protein component of caveolae membrane coats.

          Caveolae have been implicated in the transcytosis of macromolecules across endothelial cells and in the receptor-mediated uptake of 5-methyltetrahydrofolate. Structural studies indicate that caveolae are decorated on their cytoplasmic surface by a unique array of filaments or strands that form striated coatings. To understand how these nonclathrin-coated pits function, we performed structural analysis of the striated coat and searched for the molecular component(s) of the coat material. The coat cannot be removed by washing with high salt; however, exposure of membranes to cholesterol-binding drugs caused invaginated caveolae to flatten and the striated coat to disassemble. Antibodies directed against a 22 kd substrate for v-src tyrosine kinase in virus-transformed chick embryo fibroblasts decorated the filaments, suggesting that this molecule is a component of the coat. We have named the molecule caveolin. Caveolae represent a third type of coated membrane specialization that is involved in molecular transport.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for a regulated interaction between heterotrimeric G proteins and caveolin.

            Caveolae are flask-shaped plasma membrane specializations. A 22-kDa protein, caveolin, is a principal component of caveolar membranes in vivo. As recent evidence suggests that caveolae may participate in G protein-coupled signaling events, we have investigated the potential interaction of caveolin with heterotrimeric G proteins. Using cell fractionation techniques, we found that mutational or pharmacologic activation of Gs alpha prevents its cofractionation with caveolin. In a second independent approach, we directly examined the interaction of G proteins with caveolin. For this purpose, we recombinantly expressed caveolin as a glutathione S-transferase fusion protein. Using an in vitro binding assay, we found that caveolin interacts with G protein alpha subunits (Gs, Go, and Gi). Mutational or pharmacologic activation (with guanosine 5'-O-(thiotriphosphate)) of G alpha subunits prevents this interaction, indicating that the inactive GDP-bound form of G alpha subunits preferentially interacts with caveolin. This G protein binding activity is located within a 41-amino acid region of caveolin's cytoplasmic N-terminal domain (residues 61-101). Further functional analysis shows that a polypeptide derived from this region of caveolin (residues 82-101) effectively suppresses the basal activity of purified G proteins, apparently by inhibiting GDP/GTP exchange. This caveolin sequence is homologous to a region of the Rab GDP dissociation inhibitor, a known inhibitor of GDP/GTP exchange for Rab proteins. These data suggest that caveolin could function to negatively regulate the activation state of heterotrimeric G proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy.

              Neuronal nitric oxide synthase (nNOS) in fast-twitch skeletal muscle fibers is primarily particulate in contrast to its greater solubility in brain. Immunohistochemistry shows nNOS localized to the sarcolemma, with enrichment at force transmitting sites, the myotendinous junctions, and costameres. Because this distribution is similar to dystrophin, we determined if nNOS expression was affected by the loss of dystrophin. Significant nNOS immunoreactivity and enzyme activity was absent in skeletal muscle tissues from patients with Duchenne muscular dystrophy. Similarly, in dystrophin-deficient skeletal muscles from mdx mice both soluble and particulate nNOS was greatly reduced compared with C57 control mice. nNOS mRNA was also reduced in mdx muscle in contrast to mRNA levels for a dystrophin binding protein, alpha 1-syntrophin. nNOS levels increased dramatically from 2 to 52 weeks of age in C57 skeletal muscle, which may indicate a physiological role for NO in aging-related processes. Biochemical purification readily dissociates nNOS from the dystrophin-glycoprotein complex. Thus, nNOS is not an integral component of the dystrophin-glycoprotein complex and is not simply another dystrophin-associated protein since the expression of both nNOS mRNA and protein is affected by dystrophin expression.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                October 10 1997
                October 10 1997
                : 272
                : 41
                : 25437-25440
                Article
                10.1074/jbc.272.41.25437
                8a90b770-9946-4e2b-8fb1-310f061c6af5
                © 1997
                History

                Comments

                Comment on this article