3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Accuracy of the Compressed Sensing Accelerated 3D-FLAIR Sequence for the Detection of MS Plaques at 3T

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Twenty-three patients with relapsing-remitting MS underwent both conventional 3D-FLAIR and compressed sensing 3D-FLAIR on a 3T scanner (reduction in scan time 1 minute 25 seconds, 27%; compressed sensing factor of 1.3). Two blinded readers independently evaluated both conventional and compressed sensing FLAIR for image quality and the number of MS lesions visible in the periventricular, intra-juxtacortical, infratentorial, and optic nerve regions. Image quality and the number of MS lesions detected by the readers were similar between the 2 FLAIR acquisitions. Almost perfect agreement was found between the two FLAIR acquisitions for total MS lesion count. The authors conclude that at 3T, and with a compressed sensing factor of 1.3, 3D-FLAIR is 27% faster and preserves diagnostic performance for the detection of MS plaques. The use of 3D FLAIR improves the detection of brain lesions in MS patients, but requires long acquisition times. Compressed sensing reduces acquisition time by using the sparsity of MR images to randomly undersample the k-space. Our aim was to compare the image quality and diagnostic performance of 3D-FLAIR with and without compressed sensing for the detection of multiple sclerosis lesions at 3T. Twenty-three patients with relapsing-remitting MS underwent both conventional 3D-FLAIR and compressed sensing 3D-FLAIR on a 3T scanner (reduction in scan time 1 minute 25 seconds, 27%; compressed sensing factor of 1.3). Two blinded readers independently evaluated both conventional and compressed sensing FLAIR for image quality (SNR and contrast-to-noise ratio) and the number of MS lesions visible in the periventricular, intra-juxtacortical, infratentorial, and optic nerve regions. The volume of white matter lesions was measured with automatic postprocessing segmentation software for each FLAIR sequence. Image quality and the number of MS lesions detected by the readers were similar between the 2 FLAIR acquisitions ( P = .74 and P = .094, respectively). Almost perfect agreement was found between both FLAIR acquisitions for total MS lesion count (Lin concordance correlation coefficient = 0.99). Agreement between conventional and compressed sensing FLAIR was almost perfect for periventricular and infratentorial lesions and substantial for intrajuxtacortical and optic nerve lesions. Postprocessing with the segmentation software did not reveal a significant difference between conventional and compressed sensing FLAIR in total MS lesion volume ( P = .63) or the number of MS lesions ( P = .15). With a compressed sensing factor of 1.3, 3D-FLAIR is 27% faster and preserves diagnostic performance for the detection of MS plaques at 3T.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: not found
          • Article: not found

          Compressed sensing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A concordance correlation coefficient to evaluate reproducibility.

            L Lin (1989)
            A new reproducibility index is developed and studied. This index is the correlation between the two readings that fall on the 45 degree line through the origin. It is simple to use and possesses desirable properties. The statistical properties of this estimate can be satisfactorily evaluated using an inverse hyperbolic tangent transformation. A Monte Carlo experiment with 5,000 runs was performed to confirm the estimate's validity. An application using actual data is given.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Magnetic Resonance Fingerprinting

              Summary Magnetic Resonance (MR) is an exceptionally powerful and versatile measurement technique. The basic structure of an MR experiment has remained nearly constant for almost 50 years. Here we introduce a novel paradigm, Magnetic Resonance Fingerprinting (MRF) that permits the non-invasive quantification of multiple important properties of a material or tissue simultaneously through a new approach to data acquisition, post-processing and visualization. MRF provides a new mechanism to quantitatively detect and analyze complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to specifically identify the presence of a target material or tissue, which will increase the sensitivity, specificity, and speed of an MR study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern recognition algorithm, MRF inherently suppresses measurement errors and thus can improve accuracy compared to previous approaches.
                Bookmark

                Author and article information

                Journal
                American Journal of Neuroradiology
                AJNR Am J Neuroradiol
                American Society of Neuroradiology (ASNR)
                0195-6108
                1936-959X
                March 14 2018
                March 2018
                March 2018
                January 18 2018
                : 39
                : 3
                : 454-458
                Article
                10.3174/ajnr.A5517
                7655323
                29348137
                8a987385-c2b0-4b24-a8b8-7f21d9ebd80a
                © 2018
                History

                Comments

                Comment on this article