Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prediction of gait intention from pre-movement EEG signals: a feasibility study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Prediction of Gait intention from pre-movement Electroencephalography (EEG) signals is a vital step in developing a real-time Brain-computer Interface (BCI) for a proper neuro-rehabilitation system. In that respect, this paper investigates the feasibility of a fully predictive methodology to detect the intention to start and stop a gait cycle by utilizing EEG signals obtained before the event occurrence.

          Methods

          An eight-channel, custom-made, EEG system with electrodes placed around the sensorimotor cortex was used to acquire EEG data from six healthy subjects and two amputees. A discrete wavelet transform-based method was employed to capture event related information in alpha and beta bands in the time-frequency domain. The Hjorth parameters, namely activity, mobility, and complexity, were extracted as features while a two-sample unpaired Wilcoxon test was used to get rid of redundant features for better classification accuracy. The feature set thus obtained was then used to classify between ’walk vs. stop’ and ’rest vs. start’ classes using support vector machine (SVM) classifier with RBF kernel in a ten-fold cross-validation scheme.

          Results

          Using a fully predictive intention detection system, 76.41±4.47 % accuracy, 72.85±7.48 % sensitivity, and 79.93±5.50 % specificity were achieved for ’rest vs. start’ classification. While for ’walk vs. stop’ classification, the obtained mean accuracy, sensitivity, and specificity were 74.12±4.12 %, 70.24±6.45 %, and 77.78±7.01 % respectively. Overall average True Positive Rate achieved by this methodology was 72.06±8.27 % with 1.45 False Positives/min.

          Conclusion

          Extensive simulations and resulting classification results show that it is possible to achieve statistically similar intention detection accuracy using either only pre-movement EEG features or trans-movement EEG features. The classifier performance shows the potential of the proposed methodology to predict human movement intention exclusively from the pre-movement EEG signal to be applied in real-life prosthetic and neuro-rehabilitation systems.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          What is the Bereitschaftspotential?

          Since discovery of the slow negative electroencephalographic (EEG) activity preceding self-initiated movement by Kornhuber and Deecke [Kornhuber HH, Deecke L. Hirnpotentialänderungen bei Willkurbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflugers Archiv 1965;284:1-17], various source localization techniques in normal subjects and epicortical recording in epilepsy patients have disclosed the generator mechanisms of each identifiable component of movement-related cortical potentials (MRCPs) to some extent. The initial slow segment of BP, called 'early BP' in this article, begins about 2 s before the movement onset in the pre-supplementary motor area (pre-SMA) with no site-specificity and in the SMA proper according to the somatotopic organization, and shortly thereafter in the lateral premotor cortex bilaterally with relatively clear somatotopy. About 400 ms before the movement onset, the steeper negative slope, called 'late BP' in this article (also referred to as NS'), occurs in the contralateral primary motor cortex (M1) and lateral premotor cortex with precise somatotopy. These two phases of BP are differentially influenced by various factors, especially by complexity of the movement which enhances only the late BP. Event-related desynchronization (ERD) of beta frequency EEG band before self-initiated movements shows a different temporospatial pattern from that of the BP, suggesting different neuronal mechanisms for the two. BP has been applied for investigating pathophysiology of various movement disorders. Volitional motor inhibition or muscle relaxation is preceded by BP quite similar to that preceding voluntary muscle contraction. Since BP of typical waveforms and temporospatial pattern does not occur before organic involuntary movements, BP is used for detecting the participation of the 'voluntary motor system' in the generation of apparently involuntary movements in patients with psychogenic movement disorders. In view of Libet et al.'s report [Libet B, Gleason CA, Wright EW, Pearl DK. Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain 1983;106:623-642] that the awareness of intention to move occurred much later than the onset of BP, the early BP might reflect, physiologically, slowly increasing cortical excitability and, behaviorally, subconscious readiness for the forthcoming movement. Whether the late BP reflects conscious preparation for intended movement or not remains to be clarified.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Independent EEG Sources Are Dipolar

            Independent component analysis (ICA) and blind source separation (BSS) methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI) in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR) effected by each decomposition, and decomposition ‘dipolarity’ defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA); best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement.

              A method of accurate storage and on-line preprocessing of an EEG signal, preceding and following a trigger signal, elicited by button pressing, is described. The method was used to study the changes occurring in the power of the rhythmic activity within the alpha band in central areas, during voluntary, self-paced movement in 10 normal humans. A short-lasting decrease or phasic event-related desynchronization (ERD) of alpha power, representing mu activity, was observed in all 10 subjects. During the 2 sec period preceding movement the phasic ERD was mostly bilateral, but larger prior to right than to left thumb movement. At onset and during the first second of execution of movement, the phasic ERD was mostly bilateral but predominant in ipsilateral areas. Preceding or during movement, maximum ERD was observed in most cases in central-vertex regions.
                Bookmark

                Author and article information

                Contributors
                shasa022@fiu.edu
                msidd021@fiu.edu
                ratri@fiu.edu
                rramo066@fiu.edu
                jmarqu056@fiu.edu
                obai@fiu.edu
                Journal
                J Neuroeng Rehabil
                J Neuroeng Rehabil
                Journal of NeuroEngineering and Rehabilitation
                BioMed Central (London )
                1743-0003
                16 April 2020
                16 April 2020
                2020
                : 17
                : 50
                Affiliations
                GRID grid.65456.34, ISNI 0000 0001 2110 1845, Department of Electrical and Computer Engineering, Florida International University, ; Miami, Florida USA
                Article
                675
                10.1186/s12984-020-00675-5
                7164221
                32299460
                8aade680-837e-44ea-866c-261d4d2fc029
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 31 May 2019
                : 1 April 2020
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Neurosciences
                electroencephalography (eeg),brain-computer interface (bci),gait intention prediction,discrete wavelet transform,hjorth parameters

                Comments

                Comment on this article