15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Anti- Toxoplasma gondii Effect of Ursolic Acid as a Novel Toxoplasmosis Inhibitor

      research-article
      1 , * , 2
      Pharmaceuticals
      MDPI
      zoonosis, parasites, Toxoplasma gondii, infectious disease

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was carried out to evaluate the anti-parasitic effect of ursolic acid against Toxoplasma gondii ( T. gondii) that induces toxoplasmosis, particularly in humans. The anti-parasitic effects of ursolic acid against T. gondii-infected cells and T. gondii were evaluated through different specific assays, including immunofluorescence staining and animal testing. Ursolic acid effectively inhibited the proliferation of T. gondii when compared with sulfadiazine, and consistently induced anti- T. gondii activity/effect. In particular, the formation of parasitophorous vacuole membrane (PVM) in host cells was markedly decreased after treating ursolic acid, which was effectively suppressed. Moreover, the survival rate of T. gondii was strongly inhibited in T. gondii group treated with ursolic acid, and then 50% inhibitory concentration (IC 50) against T. gondii was measured as 94.62 μg/mL. The T. gondii-infected mice treated with ursolic acid indicated the same survival rates and activity as the normal group. These results demonstrate that ursolic acid causes anti- T. gondii action and effect by strongly blocking the proliferation of T. gondii through the direct and the selective T. gondii-inhibitory ability as well as increases the survival of T. gondii-infected mice. This study shows that ursolic acid has the potential to be used as a promising anti- T. gondii candidate substance for developing effective anti-parasitic drugs.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Potent Anti-Inflammatory Activity of Ursolic Acid, a Triterpenoid Antioxidant, Is Mediated through Suppression of NF-κB, AP-1 and NF-AT

          Background Ursolic acid (UA), a pentacyclic triterpenoid carboxylic acid, is the major component of many plants including apples, basil, cranberries, peppermint, rosemary, oregano and prunes and has been reported to possess antioxidant and anti-tumor properties. These properties of UA have been attributed to its ability to suppress NF-κB (nuclear factor kappa B) activation. Since NF-κB, in co-ordination with NF-AT (nuclear factor of activated T cells) and AP-1(activator protein-1), is known to regulate inflammatory genes, we hypothesized that UA might exhibit potent anti-inflammatory effects. Methodology/Principal Findings The anti-inflammatory effects of UA were assessed in activated T cells, B cells and macrophages. Effects of UA on ERK, JNK, NF-κB, AP-1 and NF-AT were studied to elucidate its mechanism of action. In vivo efficacy of UA was studied using mouse model of graft-versus-host disease. UA inhibited activation, proliferation and cytokine secretion in T cells, B cells and macrophages. UA inhibited mitogen-induced up-regulation of activation markers and co-stimulatory molecules in T and B cells. It inhibited mitogen-induced phosphorylation of ERK and JNK and suppressed the activation of immunoregulatory transcription factors NF-κB, NF-AT and AP-1 in lymphocytes. Treatment of cells with UA prior to allogenic transplantation significantly delayed induction of acute graft-versus-host disease in mice and also significantly reduced the serum levels of pro-inflammatory cytokines IL-6 and IFN-γ. UA treatment inhibited T cell activation even when added post-mitogenic stimulation demonstrating its therapeutic utility as an anti-inflammatory agent. Conclusions/Significance The present study describes the detailed mechanism of anti-inflammatory activity of UA. Further, UA may find application in the treatment of inflammatory disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Antibacterial and Antioxidant Activities of Ursolic Acid and Derivatives

            Ursolic acid, an important bioactive compound, was isolated from ethanol extract of aerial parts of Sambucus australis. In order to develop bioactive ursolic acid derivatives, two semi-synthetic compounds were obtained through modification at C-3. The antibacterial activity of the ursolic acid and its derivatives was investigated. The microdilution method was used for determination of the minimal inhibitory concentration (MIC), against twelve bacterial strains. The influence of ursolic acid and its derivatives on the susceptibility of some bacterial pathogens to the aminoglycosides antibiotics neomycin, amikacin, kanamycin and gentamicin was evaluated. The most representative synergistic effect was observed by 3β-formyloxy-urs-12-en-28-oic acid at the concentration of 64 μg/mL in combination with kanamycin against Escherichia coli (27), a multidrug-resistant clinical isolate from sputum, with reduction of MIC value from 128 μg/mL to 8 μg/mL. Ursolic acid and its derivatives were examined for their radical scavenger activity using the DPPH assay, and showed significant activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Host cell manipulation by the human pathogen Toxoplasma gondii.

              Toxoplasma gondii is an obligate intracellular parasite that can infect virtually any nucleated cell. During invasion Toxoplasma creates the parasitophorous vacuole, a subcellular compartment that acts as an interface between the parasite and host, and serves as a platform for modulation of host cell functions that support parasite replication and infection. Spatial reorganization of host organelles and cytoskeleton around the parasitophorous vacuole are observed following entry, and recent evidence suggests this interior redecorating promotes parasite nutrient acquisition. New findings also reveal that Toxoplasma manipulates host signaling pathways by deploying parasite kinases and a phosphatase, including at least two that infiltrate the host nucleus. Toxoplasma infection additionally controls several cellular pathways to establish an anti-apoptotic environment, and subverts immune cells as a conduit for dissemination. In this review we discuss these recent developments in understanding how Toxoplasma achieves widespread success as a human and animal parasite by manipulating its host.
                Bookmark

                Author and article information

                Journal
                Pharmaceuticals (Basel)
                Pharmaceuticals (Basel)
                pharmaceuticals
                Pharmaceuticals
                MDPI
                1424-8247
                09 May 2018
                June 2018
                : 11
                : 2
                : 43
                Affiliations
                [1 ]Marine Bio Research & Education Center, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea
                [2 ]Department of Chemistry, College of Natural Science, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea; leeinah@ 123456kunsan.ac.kr
                Author notes
                [* ]Correspondence: whchoi@ 123456kunsan.ac.kr or whchoi@ 123456khu.ac.kr ; Tel./Fax: +82-70-8269-5679
                Article
                pharmaceuticals-11-00043
                10.3390/ph11020043
                6026977
                29747388
                8ab50a0e-66fc-4c3d-952a-d637ba6f14b9
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 March 2018
                : 08 May 2018
                Categories
                Article

                zoonosis,parasites,toxoplasma gondii,infectious disease
                zoonosis, parasites, toxoplasma gondii, infectious disease

                Comments

                Comment on this article