20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hyperglycemia Induces Oxidative Stress and Impairs Axonal Transport Rates in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          While hyperglycemia-induced oxidative stress damages peripheral neurons, technical limitations have, in part, prevented in vivo studies to determine the effect of hyperglycemia on the neurons in the central nervous system (CNS). While olfactory dysfunction is indicated in diabetes, the effect of hyperglycemia on olfactory receptor neurons (ORNs) remains unknown. In this study, we utilized manganese enhanced MRI (MEMRI) to assess the impact of hyperglycemia on axonal transport rates in ORNs. We hypothesize that (i) hyperglycemia induces oxidative stress and is associated with reduced axonal transport rates in the ORNs and (ii) hyperglycemia-induced oxidative stress activates the p38 MAPK pathway in association with phosphorylation of tau protein leading to the axonal transport deficits.

          Research Design and Methods

          T 1-weighted MEMRI imaging was used to determine axonal transport rates post-streptozotocin injection in wildtype (WT) and superoxide dismutase 2 (SOD2) overexpressing C57Bl/6 mice. SOD2 overexpression reduces mitochondrial superoxide load. Dihydroethidium staining was used to quantify the reactive oxygen species (ROS), specifically, superoxide (SO). Protein and gene expression levels were determined using western blotting and Q-PCR analysis, respectively.

          Results

          STZ-treated WT mice exhibited significantly reduced axonal transport rates and significantly higher levels of ROS, phosphorylated p38 MAPK and tau protein as compared to the WT vehicle treated controls and STZ-treated SOD2 mice. The gene expression levels of p38 MAPK and tau remained unchanged.

          Conclusion

          Increased oxidative stress in STZ-treated WT hyperglycemic mice activates the p38 MAPK pathway in association with phosphorylation of tau and attenuates axonal transport rates in the olfactory system. In STZ-treated SOD-overexpressing hyperglycemic mice in which superoxide levels are reduced, these deficits are reversed.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy.

          We previously reported damage and elevated biogenesis in cardiac mitochondria of a type 1 diabetic mouse model and proposed that mitochondria are one of the major targets of oxidative stress. In this study, we targeted overexpression of the mitochondrial antioxidant protein manganese superoxide dismutase (MnSOD) to the heart to protect cardiac mitochondria from oxidative damage. Transgenic hearts had a 10- to 20-fold increase in superoxide dismutase (SOD) activity, and the transgenic SOD was located in mitochondria. The transgene caused a twofold increase in cardiac catalase activity. MnSOD transgenic mice demonstrated normal cardiac morphology, contractility, and mitochondria, and their cardiomyocytes were protected from exogenous oxidants. Crossing MnSOD transgenic mice with our type 1 model tested the benefit of eliminating mitochondrial reactive oxygen species. Overexpression of MnSOD improved respiration and normalized mass in diabetic mitochondria. MnSOD also protected the morphology of diabetic hearts and completely normalized contractility in diabetic cardiomyocytes. These results showed that elevating MnSOD provided extensive protection to diabetic mitochondria and provided overall protection to the diabetic heart.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons.

            Recent data indicate that T-type Ca2+ channels are amplifiers of peripheral pain signals, but their involvement in disorders of sensory neurons such as those associated with diabetes is poorly understood. To address this issue, we used a combination of behavioral, immunohistological, molecular, and electrophysiological studies in rats with streptozotocin (N-[methylnitrosocarbamoil]-D-glucosamine)-induced early diabetic neuropathy. We found that, in parallel with the development of diabetes-induced pain, T-type current density increased by twofold in medium-size cells from L4-L5 dorsal root ganglia (DRG) with a depolarizing shift in steady-state inactivation. This not only correlated closely with more prominent afterdepolarizing potentials (ADPs) but also increased cellular excitability manifested as a lower threshold for burst firing in diabetic than in control cells. T-type currents and ADPs were potently inhibited by nickel and enhanced by L-cysteine, suggesting that the Ca(V)3.2 T-type channel isoform was upregulated. Both control and diabetic DRG cells with ADPs stained positively for isolectin B4, but only diabetic cells responded robustly to capsaicin, suggesting enhanced nociceptive function. Because increased excitability of sensory neurons may result in such pathological perceptions of pain as hyperalgesia and allodynia, upregulation of T-type Ca2+ currents and enhanced Ca2+ entry into these cells could contribute to the development of symptoms in diabetic neuropathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms.

              Hyperphosphorylated tau is the major component of paired helical filaments in neurofibrillary tangles found in Alzheimer's disease (AD) brains, and tau hyperphosphorylation is thought to be a critical event in the pathogenesis of the disease. The large majority of AD cases is late onset and sporadic in origin, with aging as the most important risk factor. Insulin resistance, impaired glucose tolerance, and diabetes mellitus (DM) are other common syndromes in the elderly also strongly age dependent, and there is evidence supporting a link between insulin dysfunction and AD. To investigate the possibility that insulin dysfunction might promote tau pathology, we induced insulin deficiency and caused DM in mice with streptozotocin (STZ). A mild hyperphosphorylation of tau could be detected 10, 20, and 30 d after STZ injection, and a massive hyperphosphorylation of tau was observed after 40 d. The robust hyperphosphorylation of tau was localized in the axons and neuropil, and prevented tau binding to microtubules. Neither mild nor massive tau phosphorylation induced tau aggregation. Body temperature of the STZ-treated mice did not differ from control animals during 30 d, but dropped significantly thereafter. No change in beta-amyloid (Abeta) precursor protein (APP), APP C-terminal fragments, or Abeta levels were observed in STZ-treated mice; however, cellular protein phosphatase 2A activity was significantly decreased. Together, these data indicate that insulin dysfunction induced abnormal tau hyperphosphorylation through two distinct mechanisms: one was consequent to hypothermia; the other was temperature-independent, inherent to insulin depletion, and probably caused by inhibition of phosphatase activity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                18 October 2010
                : 5
                : 10
                : e13463
                Affiliations
                [1 ]Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
                [2 ]Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
                [3 ]Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
                Cornell University, United States of America
                Author notes

                Conceived and designed the experiments: RAS EDB TT FS CAM TI LC RGP. Performed the experiments: RAS EDB TT FS CAM LH TI. Analyzed the data: RAS EDB TT FS CAM LH TI. Contributed reagents/materials/analysis tools: LC RGP. Wrote the paper: RAS LC RGP.

                Article
                10-PONE-RA-19676R1
                10.1371/journal.pone.0013463
                2956689
                20976160
                8b50bd6c-b11f-4b12-bfb4-3a15cca42898
                Sharma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 9 June 2010
                : 14 September 2010
                Page count
                Pages: 8
                Categories
                Research Article
                Diabetes and Endocrinology
                Physiology/Sensory Systems
                Radiology and Medical Imaging/Magnetic Resonance Imaging

                Uncategorized
                Uncategorized

                Comments

                Comment on this article